全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Air Pollution Metric Analysis While Determining Susceptible Periods of Pregnancy for Low Birth Weight

DOI: 10.1155/2013/387452

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiple metrics to characterize air pollution are available for use in environmental health analyses in addition to the standard Air Quality System (AQS) pollution monitoring data. These metrics have complete spatial-temporal coverage across a domain and are therefore crucial in calculating pollution exposures in geographic areas where AQS monitors are not present. We investigate the impact that two of these metrics, output from a deterministic chemistry model (CMAQ) and from a spatial-temporal downscaler statistical model which combines information from AQS and CMAQ (DS), have on risk assessment. Using each metric, we analyze ambient ozone's effect on low birth weight utilizing a Bayesian temporal probit regression model. Weekly windows of susceptibility are identified and analyzed jointly for all births in a subdomain of Texas, 2001–2004, and results from the different pollution metrics are compared. Increased exposures during weeks 20–23 of the pregnancy are identified as being associated with low birth weight by the DS metric. Use of the CMAQ output alone results in increased variability of the final risk assessment estimates, while calibrating the CMAQ through use of the DS metric provides results more closely resembling those of the AQS. The AQS data are still preferred when available. 1. Introduction Low birth weight, defined as less than 2,500 grams (g) at birth, is associated with immediate and long-term health effects, including death. Low birth weight affects around 8% of all births in the United States (US) with over two-thirds of those cases associated with premature birth [1]. For term births who result in low birth weight, fetal growth restriction is thought to be the major contributing factor, associated with a number of factors including smoking during the pregnancy, alcohol/drug abuse, birth defects, and certain socioeconomic factors [2–4]. Long-term health effects of low birth weight include type-2 diabetes, high blood pressure, heart disease, hearing/vision problems, and intellectual disabilities. Previous ambient air pollution/birth weight epidemiologic studies have focused on low birth weight as a binary variable as well as working with continuous birth weight directly. Common analyses involve calculating pollution exposures based on active pollution monitors near the residence at delivery of the mother. Trimester averages are the most common time period of interest in these studies [5–12], while some studies have incorporated monthly exposure averages throughout the pregnancy [13, 14]. A recent literature review by ?rám et al.

References

[1]  J. A. Martin, B. E. Hamilton, P. D. Sutton et al., “Births: final data for 2005,” National Vital Statistics Reports, vol. 56, no. 6, pp. 1–103, 2007.
[2]  American College of Obstetricians and Gynecologists (ACOG), “Intrauterine growth restriction,” ACOG Practice Bulletin, no. 12, January 2000.
[3]  V. Berghella, “Prevention of recurrent fetal growth restriction,” Obstetrics and Gynecology, vol. 110, no. 4, pp. 904–912, 2007.
[4]  U.S. Department of Health and Human Services, “The Health consequences of smoking: A report of the Surgeon General, 2004,” Centers for Disease Control and Prevention, Office on Smoking and Health, Atlanta, Ga, USA, May 2004.
[5]  M. Bell, K. Ebisu, and K. Belanger, “Ambient air pollution and low birth weight in Connecticut and Massachusetts,” Environmental Health Perspectives, vol. 115, no. 7, pp. 1118–1124, 2007.
[6]  M. Bobak, “Outdoor air pollution, low birth weight, and prematurity,” Environmental Health Perspectives, vol. 108, no. 2, pp. 173–176, 2000.
[7]  N. Gouveia, S. A. Bremner, and H. M. D. Novaes, “Association between ambient air pollution and birth weight in Sao Paulo, Brazil,” Journal of Epidemiology and Community Health, vol. 58, no. 1, pp. 11–17, 2004.
[8]  E. Ha, Y. Hong, B. Lee, B. Woo, J. Schwartz, and D. C. Christiani, “Is air pollution a risk factor for low birth weight in Seoul?” Epidemiology, vol. 12, no. 6, pp. 643–648, 2001.
[9]  M. Maisonet, T. J. Bush, A. Correa, and J. J. K. Jaakkola, “Relation between ambient air pollution and low birth weight in the northeastern United States,” Environmental Health Perspectives, vol. 109, no. 3, pp. 351–356, 2001.
[10]  J. D. Parker, T. J. Woodruff, R. Basu, and K. C. Schoendorf, “Air pollution and birth weight among term infants in California,” Pediatrics, vol. 115, no. 1, pp. 121–128, 2005.
[11]  B. Ritz and F. Yu, “The effect of ambient carbon monoxide on low birth weight among children born in southern California between 1989 and 1993,” Environmental Health Perspectives, vol. 107, no. 1, pp. 17–25, 1999.
[12]  X. Wang, H. Ding, L. Ryan, and X. Xu, “Association between air pollution and low birth weight: a community-based study,” Environmental Health Perspectives, vol. 105, no. 5, pp. 514–520, 1997.
[13]  L. A. Darrow, M. Klein, M. J. Strickland, J. A. Mulholland, and P. E. Tolbert, “Ambient air pollution and birth weight in full-term infants in Atlanta, 1994–2004,” Environmental Health Perspectives, vol. 119, no. 5, pp. 731–737, 2011.
[14]  J. Dejmek, S. G. Selevan, I. Benes, I. Solansky, and R. J. Sram, “Fetal growth and maternal exposure to particulate matter during pregnancy,” Environmental Health Perspectives, vol. 107, no. 6, pp. 475–480, 1999.
[15]  R. J. ?rám, B. Binkova, J. Dejmek, and M. Bobak, “Ambient air pollution and pregnancy outcomes: a review of the literature,” Environmental Health Perspectives, vol. 113, no. 4, pp. 375–382, 2005.
[16]  J. Warren, M. Fuentes, A. Herring, and P. Langlois, “Spatial-temporal modeling of the association between air pollution exposure and preterm birth: identifying critical windows of exposure,” Biometrics, vol. 68, no. 4, pp. 1157–1167, 2012.
[17]  J. Warren, M. Fuentes, A. Herring, and P. Langlois, “Bayesian spatial-temporal model for cardiac congenital anomalies and ambient air pollution risk assessment,” Environmetrics, vol. 23, no. 8, pp. 673–684, 2012.
[18]  V. J. Berrocal, A. E. Gelfand, and D. M. Holland, “A spatio-temporal downscaler for output from numerical models,” Journal of Agricultural, Biological and Environmental Statistics, vol. 15, no. 2, pp. 176–197, 2010.
[19]  T. Bayes, “An essay towards solving a problem in the doctrince of chances,” Philosphical Transactions Royal Society London, vol. 53, no. 4, pp. 370–418, 1763.
[20]  L. Chen, E. M. Bell, A. R. Caton, C. M. Druschel, and S. Lin, “Residential mobility during pregnancy and the potential for ambient air pollution exposure misclassification,” Environmental Research, vol. 110, no. 2, pp. 162–168, 2010.
[21]  J. R. Nuckols, P. Langlois, M. L. Lynberg, and T. Luben, “Linking geographic water utility data with study participant residences from the National Birth Defects Prevention Study,” American Water Works Association Research Foundation, Denver, CO, USA, 2004.
[22]  R. Basu, T. J. Woodruff, J. D. Parker, L. Saulnier, and K. C. Schoendorf, “Comparing exposure metrics in the relationship between PM2.5 and birth weight in California,” Journal of Exposure Analysis and Environmental Epidemiology, vol. 14, no. 5, pp. 391–396, 2004.
[23]  R Development Core Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012, http://www.r-project.org/.
[24]  D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde, “Bayesian measures of model complexity and fit,” Journal of the Royal Statistical Society B, vol. 64, no. 4, pp. 583–639, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133