Objective. To assess the incidence of adverse pregnancy outcome in native and nonnative Dutch women with pregestational type 2 diabetes (T2D) in a multicenter study in The Netherlands. Methods. Maternal characteristics and pregnancy outcome were retrospectively reviewed and the influence of ethnicity on outcome was evaluated using independent -test, Mann-Whitney -test, and chi-square test. Results. 272 pregnant women (80 native and 192 non-native Dutch) with pregestational T2D were included. Overall outcome was unfavourable, with a perinatal mortality of 4.8%, major congenital malformations of 6.3%, preeclampsia of 11%, preterm birth of 19%, birth weight >90th percentile of 32%, and a Caesarean section rate of 42%. In nonnative Dutch women, the glycemic control was slightly poorer and the gestational age at booking somewhat later as compared to native Dutch women. However, there were no differences in incidence of preeclampsia/HELLP, preterm birth, perinatal mortality, macrosomia, and congenital malformations between those two groups. Conclusions. A high incidence of adverse pregnancy outcomes was found in women with pregestational T2D, although the outcome was comparable between native and non-native Dutch women. This suggests that easy access to and adequate participation in the local health care systems contribute to these comparable outcomes, offsetting potential disadvantages in the non-native group. 1. Introduction Pregestational diabetes mellitus comprises both type 1 and type 2 diabetes mellitus. Pregestational type 1 diabetes mellitus is clearly associated with an increased incidence of adverse maternal, fetal, and neonatal outcome [1–4], and several studies in the last two decades have shown that pregestational type 2 diabetes poses an emerging problem, with pregnancy outcomes at least as poor as in women with type 1 diabetes [5–9]. This gains even more importance in view of the global diabetes epidemic which leads to ever increasing numbers of women in the childbearing age with pregestational type 2 diabetes [5, 10]. To add to the problem, pregestational type 2 diabetes is encountered frequently in specific subpopulations in north-western Europe, such as recently migrated women from Africa, Asia, and the Middle East [11]. These women are possibly more prone to suboptimal participation in the health care system because of frequently existing language barriers, generally less financial resources, and low education levels in those immigrant groups. The Netherlands can be considered as a representative developed European country with ethnic
References
[1]
H. R. Murphy, G. Rayman, K. Lewis et al., “Effectiveness of continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial,” British Medical Journal, vol. 337, article a1680, 2008.
[2]
I. M. Evers, H. W. de Valk, and G. H. Visser, “Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands,” British Medical Journal, vol. 328, no. 7445, pp. 915–918, 2004.
[3]
G. Hawthorne, S. Robson, E. A. Ryall, D. Sen, S. H. Roberts, and M. P. Ward Platt, “Prospective population based survey of outcome of pregnancy in diabetic women: results of the northern diabetic pregnancy audit, 1994,” British Medical Journal, vol. 315, no. 7103, pp. 279–281, 1997.
[4]
D. M. Jensen, P. Damm, L. Moelsted-Pedersen et al., “Outcomes in type 1 diabetic pregnancies: a nationwide, population-based study,” Diabetes Care, vol. 27, no. 12, pp. 2819–2823, 2004.
[5]
D. S. Feig and V. A. Palda, “Type 2 diabetes in pregnancy: a growing concern,” The Lancet, vol. 359, no. 9318, pp. 1690–1692, 2002.
[6]
U. M. Schaefer-Graf, T. A. Buchanan, A. Xiang, G. Songster, M. Montoro, and S. L. Kjos, “Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes,” The American Journal of Obstetrics and Gynecology, vol. 182, no. 2, pp. 313–320, 2000.
[7]
T. D. Clausen, E. Mathiesen, P. Ekbom, E. Hellmuth, T. Mandrup-Poulsen, and P. Damm, “Poor pregnancy outcome in women with type 2 diabetes,” Diabetes Care, vol. 28, no. 2, pp. 323–328, 2005.
[8]
M. Balsells, A. García-Patterson, I. Gich, and R. Corcoy, “Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: a systematic review and metaanalysis,” Journal of Clinical Endocrinology & Metabolism, vol. 94, no. 11, pp. 4284–4291, 2009.
[9]
R. Bell, K. Bailey, T. Cresswell, G. Hawthorne, J. Critchley, and N. Lewis-Barned, “Trends in prevalence and outcomes of pregnancy in women with pre-existing type I and type II diabetes,” British Journal of Obstetrics and Gynaecology, vol. 115, no. 4, pp. 445–452, 2008.
[10]
A. L. Rosenbloom, J. R. Joe, R. S. Young, and W. E. Winter, “Emerging epidemic of type 2 diabetes in youth,” Diabetes Care, vol. 22, no. 2, pp. 345–354, 1999.
[11]
H. King and M. Rewers, “Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc diabetes reporting group,” Diabetes Care, vol. 16, no. 1, pp. 157–177, 1993.
[12]
A. Albertinelli, B. Knauth, K. Kraszewska, and D. Thorogood, “Migrants in Europe. A statistical portrait of the first and second generation,” 2011, http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-31-10-539/EN/KS-31-10-539-EN.PDF.
[13]
A. C. Ravelli, M. Tromp, M. Eskes et al., “Ethnic differences in stillbirth and early neonatal mortality in The Netherlands,” Journal of Epidemiology and Community Health, vol. 65, no. 8, pp. 696–701, 2011.
[14]
T. Chaudhry, A. M. Ghani, T. H. Mehrali et al., “A comparison of foetal and labour outcomes in Caucasian and Afro-Caribbean women with diabetes in pregnancy,” International Journal of Clinical Practice, vol. 58, no. 10, pp. 932–936, 2004.
[15]
F. P. Dunne, P. A. Brydon, M. Proffitt, T. Smith, H. Gee, and R. L. Holder, “Fetal and maternal outcomes in Indo-Asian compared to Caucasian women with diabetes in pregnancy,” Quarterly Journal of Medicine, vol. 93, no. 12, pp. 813–818, 2000.
[16]
D. A. Davey and I. MacGillivray, “The classification and definition of the hypertensive disorders of pregnancy,” The American Journal of Obstetrics and Gynecology, vol. 158, no. 4, pp. 892–898, 1988.
[17]
“Report of the national high blood pressure education program working group on high blood pressure in pregnancy,” The American Journal of Obstetrics and Gynecology, vol. 183, no. 1, pp. S1–S22, 2000.
[18]
G. H. Visser, P. H. Eilers, P. M. Elferink-Stinkens, H. M. Merkus, and J. M. Wit, “New Dutch reference curves for birthweight by gestational age,” Early Human Development, vol. 85, no. 12, pp. 737–744, 2009.
[19]
H. W. de Valk, N. H. van Nieuwaal, and G. H. Visser, “Pregnancy outcome in type 2 diabetes mellitus: a retrospective analysis from the Netherlands,” The Review of Diabetic Studies, vol. 3, no. 3, pp. 134–142, 2006.
[20]
H. R. Murphy, S. A. Steel, J. M. Roland et al., “Obstetric and perinatal outcomes in pregnancies complicated by type1 and type2 diabetes: influences of glycaemic control, obesity and social disadvantage,” Diabetic Medicine, vol. 28, no. 9, pp. 1060–1067, 2011.
[21]
R. Hughes and J. Rowan, “Perinatal outcomes and macrosomia in a multi-ethnic population of women with type 2 diabetes,” Australian and New Zealand Journal of Obstetrics and Gynaecology, vol. 46, no. 6, pp. 552–555, 2006.
[22]
J. Ford, J. Grewal, R. Mikolajczyk, S. Meikle, and J. Zhang, “Primary cesarean delivery among parous women in the united states, 1990–2003,” Obstetrics and Gynecology, vol. 112, no. 6, pp. 1235–1241, 2008.
[23]
D. Getahun, D. Strickland, J. M. Lawrence, M. J. Fassett, C. Koebnick, and S. J. Jacobsen, “Racial and ethnic disparities in the trends in primary cesarean delivery based on indications,” The American Journal of Obstetrics and Gynecology, vol. 201, pp. 422.e1–427.e1, 2009.
[24]
Central Bureau of Statistics, Amsterdam, the Netherlandshttp://statline.cbs.nl/StatWeb/publication/?DM=SLNL&PA=37325&D1=a&D2=0&D3=0&D4=0&D5=0-4, 137, 152, 215, 232&D6=0, 4, 9, (l-1)-l&HDR=G2, G1, G3, T&STB=G4, G5&VW=T.
[25]
“Compendium voor de leefomgeving,” 2011, http://www.compendiumvoordeleefomgeving.nl/indicatoren/nl2109-Allochtonen.html?i=15-12.
[26]
American Diabetes Association, “Standards of medical care in diabetes—2012,” Diabetes Care, vol. 35, supplement 1, pp. S11–S63, 2012.
[27]
S. G. Gabbe, E. Holing, P. Temple, and Z. A. Brown, “Benefits, risks, costs, and patient satisfaction associated with insulin pump therapy for the pregnancy complicated by type 1 diabetes mellitus,” The American Journal of Obstetrics and Gynecology, vol. 182, no. 6, pp. 1283–1291, 2000.
[28]
V. S. Raleigh, D. Hussey, I. Seccombe, and K. Hallt, “Ethnic and social inequalities in women's experience of maternity care in England: results of a national survey,” Journal of the Royal Society of Medicine, vol. 103, no. 5, pp. 188–198, 2010.
[29]
V. Flenady, P. Middleton, G. C. Smith et al., “Stillbirths: the way forward in high-income countries,” The Lancet, vol. 377, no. 9778, pp. 1703–1717, 2011.
[30]
B. T. Smith, J. W. Lynch, C. S. Fox et al., “Life-course socioeconomic position and type 2 diabetes mellitus: the Framingham offspring study,” The American Journal of Epidemiology, vol. 173, no. 4, pp. 438–447, 2011.