全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Obesity  2013 

Normal Weight Estonian Prepubertal Boys Show a More Cardiovascular-Risk-Associated Adipose Tissue Distribution than Austrian Counterparts

DOI: 10.1155/2013/506751

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Risk phenotypes for cardiovascular disease (CVD) differ markedly between countries, like the reported high difference in CVD mortality in Austria and Estonia. Hitherto, the goal of this study was to find out risk profiles in body fat distribution yet present in childhood, paving the way for later clinical end points. Methods. he subcutaneous adipose tissue (SAT) distribution patterns in 553 Austrian (A) and Estonian (E) clinically healthy normal weight boys aged 11.1 (±0.8) years were analysed. We applied the patented optical device Lipometer which determines the individual subcutaneous adipose tissue topography (SAT-Top). Results. Total body fat did not differ significantly between E and A boys. A discriminant analysis using all Lipometer data, BMI, and the total body fat (TBF) yielded 84.6% of the boys correctly classified in Estonians and Austrians by 9 body sites. A factor analysis identified the SAT distribution of E as critically similar to male adult patients with coronary heart disease (CHD). Conclusions. We show in normal weight Estonian boys a highly significant decreased fat accumulation on the lower body site compared to age matched Austrian males. This SAT-Top phenotype may play an important role for the increased cardiovascular risk seen in the Estonian population. 1. Introduction The risk for populational diseases differs markedly between geographic regions and countries, as, for example, the reported greater rate of cardiovascular mortality in Estonia compared to Austria. The latest age standardised ischemic heart disease (IHD) mortality data per 100 000 population are for Austria 80,68, while for Estonia 254,25 [1]. So far, the studies investigating cardiovascular disease (CVD) risk factors focused on adult obesity and associated metabolic disorders. However, for the assessment of populational health, it is of outmost interest to gain a better insight in the pediatric roots of CVD. Although it is well established that obesity and the subcutaneous adipose tissue (SAT) phenotype are essentially involved in CVD risk, little information exists about risk phenotypes in prepubertal obese children. Notably, the prevalence of childhood obesity increased 4-fold during the last 20 years [2], and this represents a strong risk factor for obesity of adulthood [3]. The SAT phenotype in children is of growing interest for later on CVD risk. An improved understanding of individual subcutaneous body fat distribution and body composition in children may essentially support the development of effective preventive strategies [4–7] for the

References

[1]  C. Newey, E. Nolte, M. McKee, and E. Mossialos, “Avoidable Mortality in the Enlarged European Union,” ISS Statistics, pp. 7–44, 2004.
[2]  C. B. Ebbeling, D. B. Pawlak, and D. S. Ludwig, “Childhood obesity: public-health crisis, common sense cure,” The Lancet, vol. 360, no. 9331, pp. 473–482, 2002.
[3]  U. Jaeger, K. Zellner, K. Kromeyer-Hauschild, R. Lüdde, R. Eisele, and J. Hebebrand, “Body height, body weight and body mass index of German military recruits. Historical retrospect and current status,” Anthropologischer Anzeiger, vol. 59, no. 3, pp. 251–273, 2001.
[4]  H. Kaur, M. L. Hyder, and W. S. C. Poston, “Childhood overweight: an expanding problem,” Treatments in Endocrinology, vol. 2, no. 6, pp. 375–388, 2003.
[5]  A. Pietrobelli, “Outcome measurements in paediatric obesity prevention trials,” International Journal of Obesity, vol. 28, supplement 3, pp. S86–S89, 2004.
[6]  A. Pietrobelli and L. Tatò, “Body composition measurements: from the past to the future,” Acta Paediatrica, vol. 94, no. 448, pp. 8–13, 2005.
[7]  C. Druet, K. Ong, and C. Levy Marchal, “Metabolic syndrome in children: comparison of the international diabetes federation 2007 consensus with an adapted national cholesterol education program definition in 300 overweight and obese French children,” Hormone Research in Paediatrics, vol. 73, no. 3, pp. 181–186, 2010.
[8]  C. Maffeis, A. Pietrobelli, A. Grezzani, S. Provera, and L. Tatò, “Waist circumference and cardiovascular risk factors in prepubertal children,” Obesity Research, vol. 9, no. 3, pp. 179–187, 2001.
[9]  H. D. McCarthy, “Body fat measurements in children as predictors for the metabolic syndrome: focus on waist circumference,” Proceedings of the Nutrition Society, vol. 65, no. 4, pp. 385–392, 2006.
[10]  E. Suliga, “Visceral adipose tissue in children and adolescents: a review,” Nutrition Research Reviews, vol. 22, no. 2, pp. 137–147, 2009.
[11]  R. Weiss, J. Dziura, T. S. Burgert et al., “Obesity and the metabolic syndrome in children and adolescents,” The New England Journal of Medicine, vol. 350, no. 23, pp. 2362–2374, 2004.
[12]  R. M?ller, E. Tafeit, K. H. Smolle et al., “Estimating percentage total body fat and determining subcutaneous adipose tissue distribution with a new noninvasive optical device LIPOMETER,” American Journal of Human Biology, vol. 12, no. 2, pp. 221–230, 2000.
[13]  E. Tafeit, R. M?ller, K. Sudi, and G. Reibnegger, “Artificial neural networks as a method to improve the precision of subcutaneous adipose tissue thickness measurements by means of the optical device LIPOMETER,” Computers in Biology and Medicine, vol. 30, no. 6, pp. 355–365, 2000.
[14]  P. S. Kaimbacher, M. Dunitz-Scheer, S. J. Wallner-Liebmann, P. J. Z. Scheer, K. Sudi, and W. J. Schnedl, “Decrease of total subcutaneous adipose tissue from infancy to childhood,” Journal of Pediatric Gastroenterology and Nutrition, vol. 53, no. 5, pp. 553–560, 2011.
[15]  R. Moeller, R. Horejsi, S. Pilz et al., “Evaluation of risk profiles by subcutaneous adipose tissue topography in obese juveniles,” Obesity, vol. 15, no. 5, pp. 1319–1324, 2007.
[16]  E. Tafeit, R. Mller, K. Sudi, R. Horejsi, A. Berg, and G. Reibnegger, “Orthogonal factor coefficient development of subcutaneous adipose tissue topography (SAT-Top) in girls and boys,” American Journal of Physical Anthropology, vol. 115, no. 1, pp. 57–61, 2001.
[17]  S. J. Wallner, N. Luschnigg, W. J. Schnedl et al., “Body fat distribution of overweight females with a history of weight cycling,” International Journal of Obesity, vol. 28, no. 9, pp. 1143–1148, 2004.
[18]  H. Niederlander, “Causes of death in the EU,” KS-NK-06010-EN-N, 2006.
[19]  H. Mangge, G. Almer, S. Haj-Yahya et al., “Preatherosclerosis and adiponectin subfractions in obese adolescents,” Obesity, vol. 16, no. 12, pp. 2578–2584, 2008.
[20]  T. J. Cole, “The LMS method for constructing normalized growth standards,” European Journal of Clinical Nutrition, vol. 44, no. 1, pp. 45–60, 1990.
[21]  K. Kromeyer-Hauschild, M. Wabitsch, D. Kunze et al., “Percentiles of body mass index in children and adolescents evaluated from different regional German studies,” Monatsschrift fur Kinderheilkunde, vol. 149, no. 8, pp. 807–818, 2001.
[22]  T. J. Cole, M. C. Bellizzi, K. M. Flegal, and W. H. Dietz, “Establishing a standard definition for child overweight and obesity worldwide: international survey,” British Medical Journal, vol. 320, no. 7244, pp. 1240–1243, 2000.
[23]  R. Horejsi, R. M?ller, T. R. Pieber et al., “Differences of subcutaneous adipose tissue topography between type-2 diabetic men and healthy controls,” Experimental Biology and Medicine, vol. 227, no. 9, pp. 794–798, 2002.
[24]  H. Vides, P. M. Nilsson, V. Sarapuu, T. Podar, Isacsson, and B. F. Scherstén, “Diabetes and social conditions in Estonia: a population-based study,” European Journal of Public Health, vol. 11, no. 1, pp. 60–64, 2001.
[25]  M. L. Power and J. Schulkin, “Sex differences in fat storage, fat metabolism, and the health risks from obesity: possible evolutionary origins,” British Journal of Nutrition, vol. 99, no. 5, pp. 931–940, 2008.
[26]  J. Aucouturier, M. Meyer, D. Thivel, M. Taillardat, and P. Duché, “Effect of android to gynoid fat ratio on insulin resistance in obese youth,” Archives of Pediatrics and Adolescent Medicine, vol. 163, no. 9, pp. 826–831, 2009.
[27]  H. Mangge, G. Almer, S. Haj-Yahya et al., “Nuchal thickness of subcutaneous adipose tissue is tightly associated with an increased LMW/total adiponectin ratio in obese juveniles,” Atherosclerosis, vol. 203, no. 1, pp. 277–283, 2009.
[28]  H. Mangge, G. Almer, M. Truschnig-Wilders, A. Schmidt, R. Gasser, and D. Fuchs, “Inflammation, adiponectin, obesity and cardiovascular risk,” Current Medicinal Chemistry, vol. 17, no. 36, pp. 4511–4520, 2010.
[29]  F. Prüller, R. B. Raggam, V. Posch et al., “Trunk weighted obesity, cholesterol levels and low grade inflammation are main determinants for enhanced thrombin generation,” Atherosclerosis, vol. 220, no. 1, pp. 215–218, 2012.
[30]  O. Y. Addo and J. H. Himes, “Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents,” American Journal of Clinical Nutrition, vol. 91, no. 3, pp. 635–642, 2010.
[31]  S. B. Sisson, P. T. Katzmarzyk, S. R. Srinivasan et al., “Ethnic differences in subcutaneous adiposity and waist girth in children and adolescents,” Obesity, vol. 17, no. 11, pp. 2075–2081, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133