全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Obesity  2013 

Vitamin D Deficiency Is Prevalent in Morbidly Obese Adolescents Prior to Bariatric Surgery

DOI: 10.1155/2013/284516

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Obese adults are frequently vitamin D deficient before bariatric surgery; whether similar abnormalities exist in morbidly obese adolescents is unknown. Objective. To determine the prevalence of vitamin D deficiency in morbidly obese adolescents. Methods. Cross-sectional study of preoperative laboratory measures from 236 adolescents evaluated for bariatric surgery. Results. The group ( with 25-hydroxyvitamin D (25OHD) and parathyroid hormone (PTH) levels; 76 boys, 143 girls; years; 43% Caucasian, 35% Hispanic, and 15% African American) had mean BMI of ?kg/m2. 25OHD levels were deficient (<20?ng/mL) in 53%; 8% had severe deficiency (<10?ng/mL); only 18% of patients were replete (>30?ng/mL). 25OHD levels were inversely associated with BMI ( , ) and PTH levels ( , ). Race was the strongest predictor of 25OHD ( ); 82% of African Americans, 59% of Hispanics, and 37% of Caucasians were deficient. African American race, BMI, and PTH explained 21% of the variance in 25OHD ( ). Conclusions. Most adolescents presenting for bariatric surgery have suboptimal vitamin D levels, with African Americans and those with higher BMIs at greatest risk for vitamin D deficiency. All morbidly obese adolescents should be screened for vitamin D deficiency before bariatric procedures. 1. Introduction Over the past thirty years, the adolescent obesity rate has more than tripled. It has been estimated that 17% of US children and adolescents meet criteria for overweight (body mass index (BMI) between the 85th–95th percentile for age) and 4% are now considered morbidly obese (BMI > 99th percentile) [1, 2]. Bariatric surgery is widely used in the morbidly obese adult population [3–5]. Since the late 1990s, coincident with the increased prevalence of obesity (BMI > 30?kg/m2) in the adolescent population, bariatric surgery use in adolescents has grown rapidly. It has been estimated that between 1000 and several thousand adolescents undergo bariatric procedures each year [6]. There is increasing evidence suggesting that these procedures may be the most effective treatment for weight loss in the adolescent as well as in the adult [7–12]. Indeed, a recent meta-analysis found that in adolescents, bariatric surgery was associated with permanent weight loss and resolution of concomitant metabolic conditions, including diabetes and hypertension [11]. Data on skeletal and mineral metabolism consequences of morbid obesity and bariatric surgery in adolescents are limited. Prior to surgery, obese adults are often vitamin D deficient, with lowest levels in the most obese individuals [13].

References

[1]  S. A. Xanthakos, “Bariatric surgery for extreme adolescent obesity: indications, outcomes, and physiologic effects on the gut-brain axis,” Pathophysiology, vol. 15, no. 2, pp. 135–146, 2008.
[2]  C. L. Ogden, M. D. Carroll, L. R. Curtin, M. A. McDowell, C. J. Tabak, and K. M. Flegal, “Prevalence of overweight and obesity in the United States, 1999–2004,” The Journal of the American Medical Association, vol. 295, no. 13, pp. 1549–1555, 2006.
[3]  P. E. O'Brien, J. B. Dixon, C. Laurie et al., “Treatment of mild to moderate obesity with laparoscopic adjustable gastric banding or an intensive medical program: a randomized trial,” Annals of Internal Medicine, vol. 144, no. 9, pp. 625–633, 2006.
[4]  J. B. Dixon, P. E. O'Brien, J. Playfair et al., “Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial,” The Journal of the American Medical Association, vol. 299, no. 3, pp. 316–323, 2008.
[5]  C. L. Keating, J. B. Dixon, M. L. Moodie et al., “Cost-effectiveness of surgically induced weight loss for the management of type 2 diabetes: modeled lifetime analysis,” Diabetes Care, vol. 32, no. 4, pp. 567–574, 2009.
[6]  J. R. Ingelfinger, “Bariatric surgery in adolescents,” The New England Journal of Medicine, vol. 365, no. 15, pp. 1365–1367.
[7]  P. E. O'Brien, S. M. Sawyer, C. Laurie et al., “Laparoscopic adjustable gastric banding in severely obese adolescents: a randomized trial,” The Journal of the American Medical Association, vol. 303, no. 6, pp. 519–526, 2010.
[8]  K. Dolan, L. Creighton, G. Hopkins, and G. Fielding, “Laparoscopic gastric banding in morbidly obese adolescents,” Obesity Surgery, vol. 13, no. 1, pp. 101–104, 2003.
[9]  B. E. Dillard III, V. Gorodner, C. Galvani et al., “Initial experience with the adjustable gastric band in morbidly obese US adolescents and recommendations for further investigation,” Journal of Pediatric Gastroenterology and Nutrition, vol. 45, no. 2, pp. 240–246, 2007.
[10]  E. P. Nadler, H. A. Youn, C. J. Ren, and G. A. Fielding, “An update on 73 US obese pediatric patients treated with laparoscopic adjustable gastric banding: comorbidity resolution and compliance data,” Journal of Pediatric Surgery, vol. 43, no. 1, pp. 141–146, 2008.
[11]  J. R. Treadwell, F. Sun, and K. Schoelles, “Systematic review and meta-analysis of bariatric surgery for pediatric obesity,” Annals of Surgery, vol. 248, no. 5, pp. 763–776, 2008.
[12]  M. L. Kendrick and G. F. Dakin, “Surgical approaches to obesity,” Mayo Clinic Proceedings, vol. 81, no. 10, pp. S18–S24, 2006.
[13]  E. M. Stein, G. Strain, N. Sinha et al., “Vitamin D insufficiency prior to bariatric surgery: risk factors and a pilot treatment study,” Clinical Endocrinology, vol. 71, no. 2, pp. 176–183, 2009.
[14]  K. Gemmel, H. P. Santry, V. N. Prachand, and J. C. Alverdy, “Vitamin D deficiency in preoperative bariatric surgery patients,” Surgery for Obesity and Related Diseases, vol. 5, no. 1, pp. 54–59, 2009.
[15]  L. Flancbaum, S. Belsley, V. Drake, T. Colarusso, and E. Tayler, “Preoperative nutritional status of patients undergoing Roux-en-Y gastric bypass for morbid obesity,” Journal of Gastrointestinal Surgery, vol. 10, no. 7, pp. 1033–1037, 2006.
[16]  A. M. Carlin, D. S. Rao, A. M. Meslemani et al., “Prevalence of vitamin D depletion among morbidly obese patients seeking gastric bypass surgery,” Surgery for Obesity and Related Diseases, vol. 2, no. 2, pp. 98–103, 2006.
[17]  E. P. Nadler, S. Reddy, A. Isenalumhe et al., “Laparoscopic adjustable gastric banding for morbidly obese adolescents affects android fat loss, resolution of comorbidities, and improved metabolic status,” Journal of the American College of Surgeons, vol. 209, no. 5, pp. 638–644, 2009.
[18]  M. Misra, D. Pacaud, A. Petryk, P. F. Collett-Solberg, and M. Kappy, “Vitamin D deficiency in children and its management: review of current knowledge and recommendations,” Pediatrics, vol. 122, no. 2, pp. 398–417, 2008.
[19]  R. Vieth, “Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety,” The American Journal of Clinical Nutrition, vol. 69, no. 5, pp. 842–856, 1999.
[20]  M. F. Holick, “Medical progress: vitamin D deficiency,” The New England Journal of Medicine, vol. 357, no. 3, pp. 266–281, 2007.
[21]  J. Kumar, P. Muntner, F. J. Kaskel, S. M. Hailpern, and M. L. Melamed, “Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001–2004,” Pediatrics, vol. 124, no. 3, pp. e362–e370, 2009.
[22]  M. Smotkin-Tangorra, R. Purushothaman, A. Gupta, G. Nejati, H. Anhalt, and S. Ten, “Prevalence of vitamin D insufficiency in obese children and adolescents,” Journal of Pediatric Endocrinology and Metabolism, vol. 20, no. 7, pp. 817–823, 2007.
[23]  R. Alemzadeh, J. Kichler, G. Babar, and M. Calhoun, “Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season,” Metabolism: Clinical and Experimental, vol. 57, no. 2, pp. 183–191, 2008.
[24]  “NIH conference. Gastrointestinal surgery for severe obesity. Consensus development conference panel,” Annals of Internal Medicine, vol. 115, no. 12, pp. 956–961, 1991.
[25]  E. Hypp?nen and C. Power, “Hypovitaminosis D in British adults at age 45?y: nationwide cohort study of dietary and lifestyle predictors,” The American Journal of Clinical Nutrition, vol. 85, no. 3, pp. 860–868, 2007.
[26]  M. B. Snijder, R. M. van Dam, M. Visser et al., “Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 7, pp. 4119–4123, 2005.
[27]  J. Wortsman, L. Y. Matsuoka, T. C. Chen, Z. Lu, and M. F. Holick, “Decreased bioavailability of vitamin D in obesity,” The American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 690–693, 2000.
[28]  E. Kamycheva, J. Sundsfjord, and R. Jorde, “Serum parathyroid hormone level is associated with body mass index. The 5th Troms? study,” European Journal of Endocrinology, vol. 151, no. 2, pp. 167–172, 2004.
[29]  K. Rajakumar, J. de las Heras, T. C. Chen, S. Lee, M. F. Holick, and S. A. Arslanian, “Vitamin D status, adiposity, and lipids in black American and Caucasian children,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 5, pp. 1560–1567, 2011.
[30]  C. M. Gordon, K. C. DePeter, H. A. Feldman, E. Grace, and S. J. Emans, “Prevalence of vitamin D deficiency among healthy adolescents,” Archives of Pediatrics and Adolescent Medicine, vol. 158, no. 6, pp. 531–537, 2004.
[31]  N. H. Bell, “Bone and mineral metabolism in African Americans,” Trends in Endocrinology and Metabolism, vol. 8, no. 6, pp. 240–245, 1997.
[32]  Y. Dong, N. Pollock, I. S. Stallmann-Jorgensen et al., “Low 25-hydroxyvitamin D levels in adolescents: race, season, adiposity, physical activity, and fitness,” Pediatrics, vol. 125, no. 6, pp. 1104–1111, 2010.
[33]  B. W. Hollis, “Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D,” The Journal of Nutrition, vol. 135, no. 2, pp. 317–322, 2005.
[34]  R. P. Heaney, M. S. Dowell, C. A. Hale, and A. Bendich, “Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D,” Journal of the American College of Nutrition, vol. 22, no. 2, pp. 142–146, 2003.
[35]  H. A. Bischoff-Ferrari, T. Dietrich, E. J. Orav, and B. Dawson-Hughes, “Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults,” The American Journal of Medicine, vol. 116, no. 9, pp. 634–639, 2004.
[36]  R. Vieth, Y. Ladak, and P. G. Walfish, “Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 1, pp. 185–191, 2003.
[37]  M. C. Chapuy, P. Preziosi, M. Maamer et al., “Prevalence of vitamin D insufficiency in an adult normal population,” Osteoporosis International, vol. 7, no. 5, pp. 439–443, 1997.
[38]  G. El-Hajj Fuleihan, M. Nabulsi, M. Choucair et al., “Hypovitaminosis D in healthy schoolchildren,” Pediatrics, vol. 107, no. 4, article E53, 2001.
[39]  K. M. Hill, G. P. McCabe, L. D. McCabe, C. M. Gordon, S. A. Abrams, and C. M. Weaver, “An inflection point of serum 25-hydroxyvitamin D for maximal suppression of parathyroid hormone is not evident from multi-site pooled data in children and adolescents,” The Journal of Nutrition, vol. 140, no. 11, pp. 1983–1988, 2010.
[40]  A. Ashraf, J. Alvarez, K. Saenz, B. Gower, K. McCormick, and F. Franklin, “Threshold for effects of vitamin D deficiency on glucose metabolism in obese female African-American adolescents,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3200–3206, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133