全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Slack, Slick, and Sodium-Activated Potassium Channels

DOI: 10.1155/2013/354262

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. 1. Introduction A key determinant of the many varied types of firing patterns that can be observed in excitable cells is the number and types of potassium channels that are expressed in the plasma membrane. In contrast to the relatively low number of genes for other channels that regulate excitability (10 known genes each for voltage-activated sodium and calcium channels), there are at least 77 known genes that encode alpha subunits of potassium channels [1]. Moreover, in contrast to sodium and calcium channels, in which the entire pore-forming channel is formed from one polypeptide, most potassium channels are tetramers that result from the coassembly of either the same or different subunits from the same family. This finding, coupled with the fact that most potassium channel genes have multiple splice isoforms and that the subunits themselves are subject to a variety of posttranslational modifications, means the potassium channel superfamily is capable of producing an extraordinarily large variety of channels with different kinetic behaviors and voltage dependences. The pore-forming α-subunits of potassium channel can be divided into voltage-dependent (Kv) subunits, inward rectifier (Kir) subunits, two pore (K2P) subunits (which assemble as dimers rather than tetramers), those activated by intracellular calcium (KCa subunits), and those activated by intracellular sodium (KNa subunits). While the existence of KNa channels has been recognized since the early 1980s, it is only in the last ten years or so that their molecular identity has been known. Research over this time has revealed that rather small changes in the function of these channels can have devastating effects on neuronal development and intellectual function [2, 3]. This review will summarize our current understanding of this class of

References

[1]  B. Hille, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass, USA, 3rd edition, 2001.
[2]  G. Barcia, M. R. Fleming, A. Deligniere et al., “De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy,” Nature Genetics, vol. 44, pp. 1255–1259, 2012.
[3]  S. E. Heron, K. R. Smith, M. Bahlo et al., “Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy,” Nature Genetics, vol. 44, pp. 1188–1190, 2012.
[4]  A. Bhattacharjee, W. J. Joiner, M. Wu, Y. Yang, F. J. Sigworth, and L. K. Kaczmarek, “Slick (Slo2. 1), a rapidly-gating sodium-activated potassium channel inhibited by ATP,” The Journal of Neuroscience, vol. 23, no. 37, pp. 11681–11691, 2003.
[5]  T. J. Tamsett, K. E. Picchione, and A. Bhattacharjee, “NAD+ activates channels in dorsal root ganglion neurons,” The Journal of Neuroscience, vol. 29, no. 16, pp. 5127–5134, 2009.
[6]  M. R. Brown, J. Kronengold, V. R. Gazula et al., “Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack,” Nature Neuroscience, vol. 13, no. 7, pp. 819–821, 2010.
[7]  M. Kameyama, M. Kakei, and R. Sato, “Intracellular Na+ activates a K+ channel in mammalian cardiac cells,” Nature, vol. 309, no. 5966, pp. 354–356, 1984.
[8]  C. R. Bader, L. Bernheim, and D. Bertrand, “Sodium-activated potassium current in cultured avian neurones,” Nature, vol. 317, no. 6037, pp. 540–542, 1985.
[9]  K. Hartung, “Potentiation of a transient outward current by Na+ influx in crayfish neurones,” Pflugers Archiv, vol. 404, no. 1, pp. 41–44, 1985.
[10]  S. E. Dryer, J. T. Fujii, and A. R. Martin, “A Na+-activated K+ current in cultured brain stem neurones from chicks,” The Journal of Physiology, vol. 410, pp. 283–296, 1989.
[11]  P. C. Schwindt, W. J. Spain, and W. E. Crill, “Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons,” Journal of Neurophysiology, vol. 61, no. 2, pp. 233–244, 1989.
[12]  C. Haimann, L. Bernheim, D. Bertrand, and C. R. Bader, “Potassium current activated by intracellular sodium in quail trigeminal ganglion neurons,” Journal of General Physiology, vol. 95, no. 5, pp. 961–979, 1990.
[13]  S. E. Dryer, “Na+-activated K+ channels and voltage-evoked ionic currents in brain stem and parasympathetic neurones of the chick,” The Journal of Physiology, vol. 435, pp. 513–532, 1991.
[14]  M. Saito and C. F. Wu, “Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts,” The Journal of Neuroscience, vol. 11, no. 7, pp. 2135–2150, 1991.
[15]  T. M. Egan, D. Dagan, J. Kupper, and I. B. Levitan, “Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons,” The Journal of Neuroscience, vol. 12, no. 5, pp. 1964–1976, 1992.
[16]  C. Haimann, J. Magistretti, and B. Pozzi, “Sodium-activated potassium current in sensory neurons: a comparison of cell-attached and cell-free single-channel activities,” Pflugers Archiv, vol. 422, no. 3, pp. 287–294, 1992.
[17]  N. Dale, “A large, sustained Na+- and voltage-dependent K+ current in spinal neurons of the frog embryo,” The Journal of Physiology, vol. 462, pp. 349–372, 1993.
[18]  B. V. Safronov and W. Vogel, “Properties and functions of Na+-activated K+ channels in the soma of rat motoneurones,” The Journal of Physiology, vol. 497, no. 3, pp. 727–734, 1996.
[19]  U. Bischoff, W. Vogel, and B. V. Safronov, “Na+-activated K+ channels in small dorsal root ganglion neurones of rat,” The Journal of Physiology, vol. 510, part 3, pp. 743–754, 1998.
[20]  S. E. Dryer, “Na+-activated K+ channels: a new family of large-conductance ion channels,” Trends in Neurosciences, vol. 17, no. 4, pp. 155–160, 1994.
[21]  A. Bhattacharjee and L. K. Kaczmarek, “For K+ channels, Na+ is the new Ca2+,” Trends in Neurosciences, vol. 28, no. 8, pp. 422–428, 2005.
[22]  S. B. Gao, Y. Wu, C. X. Lü, Z. H. Guo, C. H. Li, and J. P. Ding, “Slack and Slick channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons,” Acta Pharmacologica Sinica, vol. 29, no. 8, pp. 899–905, 2008.
[23]  M. O. Nuwer, K. E. Picchione, and A. Bhattacharjee, “PKA-induced internalization of Slack channels produces dorsal root ganglion neuron hyperexcitability,” The Journal of Neuroscience, vol. 30, no. 42, pp. 14165–14172, 2010.
[24]  D. Hess, E. Nanou, and A. El Manira, “Characterization of Na+-activated K+ currents in larval lamprey spinal cord neurons,” Journal of Neurophysiology, vol. 97, no. 5, pp. 3484–3493, 2007.
[25]  E. Nanou and A. El Manira, “A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+-activated K+ channels in spinal cord neurones,” European Journal of Neuroscience, vol. 25, no. 2, pp. 445–450, 2007.
[26]  P. Wallén, B. Robertson, L. Cangiano et al., “Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons,” The Journal of Physiology, vol. 585, no. 1, pp. 75–90, 2007.
[27]  E. Nanou, A. Kyriakatos, A. Bhattacharjee, L. K. Kaczmarek, G. Paratcha, and A. El Manira, “Na+-mediated coupling between AMPA receptors and channels shapes synaptic transmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 52, pp. 20941–20946, 2008.
[28]  E. Nanou and A. El Manira, “Mechanisms of modulation of AMPA-induced Na+-activated K+ current by mGluR1,” Journal of Neurophysiology, vol. 103, no. 1, pp. 441–445, 2010.
[29]  A. R. Mercer and J. G. Hildebrand, “Developmental changes in the density of ionic currents in antennal-lobe neurons of the sphinx moth, Manduca sexta,” Journal of Neurophysiology, vol. 87, no. 6, pp. 2664–2675, 2002.
[30]  K. Aoki, K. Kosakai, and M. Yoshino, “Monoaminergic modulation of the Na+-activated K+ channel in kenyon cells isolated from the mushroom body of the cricket (Gryllus bimaculatus) brain,” Journal of Neurophysiology, vol. 100, no. 3, pp. 1211–1222, 2008.
[31]  G. Klees, P. Hochstrate, and P. W. Dierkes, “Sodium-dependent potassium channels in leech P neurons,” Journal of Membrane Biology, vol. 208, no. 1, pp. 27–38, 2005.
[32]  Y. Zhang, M. R. Brown, C. Hyland et al., “Regulation of neuronal excitability by interaction of fragile X mental retardation protein with Slack potassium channels,” The Journal of Neuroscience, vol. 32, pp. 15318–15327, 2012.
[33]  C. Lawrence and G. C. Rodrigo, “A Na+-activated K+ current (IK,Na) is present in guinea-pig but not rat ventricular myocytes,” Pflugers Archiv, vol. 437, no. 6, pp. 831–838, 1999.
[34]  M. Zhou, Z. Liu, C. Hu, Z. Zhang, and Y. Mei, “Developmental regulation of a Na+-activated fast outward K+ current in rat myoblasts,” Cellular Physiology and Biochemistry, vol. 14, no. 4–6, pp. 225–230, 2004.
[35]  C. K. Young, H. S. Jae, M. K. Tong et al., “Sodium-activated potassium current in guinea pig gastric myocytes,” Journal of Korean Medical Science, vol. 22, no. 1, pp. 57–62, 2007.
[36]  L. Re, V. Moretti, L. Rossini, and P. Giusti, “Sodium-activated potassium current in mouse diaphragm,” FEBS Letters, vol. 270, no. 1-2, pp. 195–197, 1990.
[37]  Y. Zhang and W. G. Paterson, “Functional evidence for Na+-activated K+ channels in circular smooth muscle of the opossum lower esophageal sphincter,” American The Journal of Physiology, vol. 292, no. 6, pp. G1600–G1606, 2007.
[38]  M. Paulais, S. Lachheb, and J. Teulon, “A Na+- and Cl?-activated K+ channel in the thick ascending limb of mouse kidney,” Journal of General Physiology, vol. 127, no. 2, pp. 205–215, 2006.
[39]  T. M. Egan, D. Dagan, J. Kupper, and I. B. Levitan, “Na+-activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes,” Brain Research, vol. 584, no. 1-2, pp. 319–321, 1992.
[40]  W. J. Joiner, M. D. Tang, L. Y. Wang et al., “Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits,” Nature Neuroscience, vol. 1, no. 6, pp. 462–469, 1998.
[41]  A. Yuan, C. M. Santi, A. Wei et al., “The sodium-activated potassium channel is encoded by a member of the Slo gene family,” Neuron, vol. 37, no. 5, pp. 765–773, 2003.
[42]  Y. Jiang, A. Pico, M. Cadene, B. T. Chait, and R. MacKinnon, “Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel,” Neuron, vol. 29, no. 3, pp. 593–601, 2001.
[43]  P. Yuan, M. D. Leonetti, A. R. Pico, Y. Hsiung, and R. MacKinnon, “Structure of the human BK channel Ca2+-activation apparatus at 3.0 ? resolution,” Science, vol. 329, no. 5988, pp. 182–186, 2010.
[44]  Z. Zhang, A. Rosenhouse-Dantsker, Q. Y. Tang, S. Noskov, and D. E. Logothetis, “The RCK2 domain uses a coordination site present in Kir channels to confer sodium sensitivity to Slo2.2 channels,” The Journal of Neuroscience, vol. 30, no. 22, pp. 7554–7562, 2010.
[45]  J. L. Sui, K. W. Chan, and D. E. Logothetis, “Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism,” Journal of General Physiology, vol. 108, no. 5, pp. 381–391, 1996.
[46]  M. R. Brown, J. Kronengold, V. R. Gazula et al., “Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation,” The Journal of Physiology, vol. 586, no. 21, pp. 5161–5179, 2008.
[47]  A. Yuan, M. Dourado, A. Butler, N. Walton, A. Wei, and L. Salkoff, “SLO-2, a K+ channel with an unusual Cl? dependence,” Nature Neuroscience, vol. 3, no. 8, pp. 771–779, 2000.
[48]  M. Schreiber and L. Salkoff, “A novel calcium-sensing domain in the BK channel,” Biophysical Journal, vol. 73, no. 3, pp. 1355–1363, 1997.
[49]  H. Chen, J. Kronengold, Y. Yan et al., “The N-terminal domain of slack determines the formation and trafficking of slick/slack heteromeric sodium-activated potassium channels,” The Journal of Neuroscience, vol. 29, no. 17, pp. 5654–5665, 2009.
[50]  A. Bhattacharjee, L. Gan, and L. K. Kaczmarek, “Localization of the Slack potassium channel in the rat central nervous system,” Journal of Comparative Neurology, vol. 454, no. 3, pp. 241–254, 2002.
[51]  A. Bhattacharjee, C. A. A. von Hehn, X. Mei, and L. K. Kaczmarek, “Localization of the Na+-activated K+ channel slick in the rat central nervous system,” Journal of Comparative Neurology, vol. 484, no. 1, pp. 80–92, 2005.
[52]  D. S. Koh, P. Jonas, and W. Vogel, “Na+-activated K+ channels localized in the nodal region of myelinated axons of Xenopus,” The Journal of Physiology, vol. 479, no. 2, pp. 183–197, 1994.
[53]  K. Mori, T. Saito, Y. Masuda, and H. Nakaya, “Effects of class III antiarrhythmic drugs on the Na+-activated K+ channels in guinea-pig ventricular cells,” British Journal of Pharmacology, vol. 119, no. 1, pp. 133–141, 1996.
[54]  K. Mori, S. Kobayashi, T. Saito, Y. Masuda, and H. Nakaya, “Inhibitory effects of class I and IV antiarrhythmic drugs on the Na+- activated K+ channel current in guinea pig ventricular cells,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 358, no. 6, pp. 641–648, 1998.
[55]  Y. Li, T. Sato, and M. Arita, “Bepridil blunts the shortening of action potential duration caused by metabolic inhibition via blockade of ATP-sensitive K+ channels and Na+- activated K+ channels,” Journal of Pharmacology and Experimental Therapeutics, vol. 291, no. 2, pp. 562–568, 1999.
[56]  B. Yang, V. K. Gribkoff, J. Pan et al., “Pharmacological activation and inhibition of Slack (Slo2. 2) channels,” Neuropharmacology, vol. 51, no. 4, pp. 896–906, 2006.
[57]  M. D. Tejada, K. Stolpe, A. K. Meinild, and D. A. Klaerke, “Clofilium inhibits Slick and Slack potassium channels,” Biologics, vol. 6, pp. 465–470, 2012.
[58]  B. Yang, R. Desai, and L. K. Kaczmarek, “Slack and slick channels regulate the accuracy of timing of auditory neurons,” The Journal of Neuroscience, vol. 27, no. 10, pp. 2617–2627, 2007.
[59]  B. Biton, S. Sethuramanujam, K. E. Picchione et al., “The antipsychotic drug loxapine is an opener of the sodium-activated potassium channel slack (Slo2. 2),” The Journal of Pharmacology and Experimental Therapeutics, vol. 340, pp. 706–715, 2012.
[60]  C. M. Santi, G. Ferreira, B. Yang et al., “Opposite regulation of Slick and Slack K+ channels by neuromodulators,” The Journal of Neuroscience, vol. 26, no. 19, pp. 5059–5068, 2006.
[61]  M. R. Fleming and L. K. Kaczmarek, “Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors,” Journal of Receptors and Signal Transduction, vol. 29, no. 3-4, pp. 173–181, 2009.
[62]  M. D. Tejada, L. J. Jensen, and D. A. Klaerke, “PIP(2) modulation of Slick and Slack K(+) channels,” Biochemical and Biophysical Research Communications, vol. 424, pp. 208–213, 2012.
[63]  L. Zhang, M. Sukhareva, J. L. Barker et al., “Direct binding of estradiol enhances Slack (sequence like a calcium-activated potassium channel) channels' activity,” Neuroscience, vol. 131, no. 2, pp. 275–282, 2005.
[64]  V. A. Ruffin, X. Q. Gu, D. Zhou et al., “The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis,” Neuroscience, vol. 151, no. 2, pp. 410–418, 2008.
[65]  M. O. Nuwer, K. E. Picchione, and A. Bhattacharjee, “cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel,” Neuropharmacology, vol. 57, no. 3, pp. 219–226, 2009.
[66]  B. C. Suh and B. Hille, “Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate,” Current Opinion in Neurobiology, vol. 15, no. 3, pp. 370–378, 2005.
[67]  L. K. Kaczmarek, “Non-conducting functions of voltage-gated ion channels,” Nature Reviews Neuroscience, vol. 7, no. 10, pp. 761–771, 2006.
[68]  C. R. Rose, “Na+ signals at central synapses,” Neuroscientist, vol. 8, no. 6, pp. 532–539, 2002.
[69]  C. R. Rose and B. R. Ransom, “Regulation of intracellular sodium in cultured rat hippocampal neurones,” The Journal of Physiology, vol. 499, part 3, pp. 573–587, 1997.
[70]  C. R. Rose and A. Konnerth, “Nmda receptor-mediated Na+ signals in spines and dendrites,” The Journal of Neuroscience, vol. 21, no. 12, pp. 4207–4214, 2001.
[71]  N. Zhong, V. Beaumont, and R. S. Zucker, “Roles for mitochondrial and reverse mode Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions,” The Journal of Neuroscience, vol. 21, no. 24, pp. 9598–9607, 2001.
[72]  G. Budelli, T. A. Hage, A. Wei et al., “Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology,” Nature Neuroscience, vol. 12, no. 6, pp. 745–750, 2009.
[73]  T. A. Hage and L. Salkoff, “Sodium-activated potassium channels are functionally coupled to persistent sodium currents,” The Journal of Neuroscience, vol. 32, pp. 2714–2721, 2012.
[74]  M. R. Markham, L. K. Kaczmarek, and H. H. Zakon, “A sodium-activated potassium channe supports high frequency firing and reduces energetic costs during rapid modulations of action potential amplitude,” Journal of Neurophysiology, vol. 109, no. 7, pp. 1713–1723, 2013.
[75]  S. Uchino, H. Wada, S. Honda et al., “Slo2 sodium-activated K+ channels bind to the PDZ domain of PSD-95,” Biochemical and Biophysical Research Communications, vol. 310, no. 4, pp. 1140–1147, 2003.
[76]  T. Zamalloa, C. P. Bailey, and J. Pineda, “Glutamate-induced post-activation inhibition of locus coeruleus neurons is mediated by AMPA/kainate receptors and sodium-dependent potassium currents,” British Journal of Pharmacology, vol. 156, no. 4, pp. 649–661, 2009.
[77]  S. Lu, P. Das, D. A. Fadool, and L. K. Kaczmarek, “The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice,” Journal of Neurophysiology, vol. 103, no. 6, pp. 3311–3319, 2010.
[78]  R. C. Foehring, P. C. Schwindt, and W. E. Crill, “Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons,” Journal of Neurophysiology, vol. 61, no. 2, pp. 245–256, 1989.
[79]  M. Kubota and N. Saito, “Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro,” The Journal of Physiology, vol. 440, pp. 131–142, 1991.
[80]  U. Kim and D. A. Mccormick, “Functional and ionic properties of a slow afterhyperpolarization in ferret perigeniculate neurons in vitro,” Journal of Neurophysiology, vol. 80, no. 3, pp. 1222–1235, 1998.
[81]  V. M. Sandler, E. Puil, and D. W. F. Schwarz, “Intrinsic response properties of bursting neurons in the nucleus principalis trigemini of the gerbil,” Neuroscience, vol. 83, no. 3, pp. 891–904, 1998.
[82]  M. V. Sanchez-Vives, L. G. Nowak, and D. A. McCormick, “Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro,” The Journal of Neuroscience, vol. 20, no. 11, pp. 4286–4299, 2000.
[83]  S. Franceschetti, T. Lavazza, G. Curia et al., “Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons,” Journal of Neurophysiology, vol. 89, no. 4, pp. 2101–2111, 2003.
[84]  V. F. Descalzo, L. G. Nowak, J. C. Brumberg, D. A. McCormick, and M. V. Sanchez-Vives, “Slow adaptation in fast-spiking neurons of visual cortex,” Journal of Neurophysiology, vol. 93, no. 2, pp. 1111–1118, 2005.
[85]  J. Benda, L. Maler, and A. Longtin, “Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds,” Journal of Neurophysiology, vol. 104, no. 5, pp. 2806–2820, 2010.
[86]  X. Liu and L. S. Leung, “Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells,” Brain Research, vol. 1023, no. 2, pp. 185–192, 2004.
[87]  L. Cangiano, P. Wallén, and S. Grillner, “Role of apamin-sensitive channels for reticulospinal synaptic transmission to motoneuron and for the afterhyperpolarization,” Journal of Neurophysiology, vol. 88, no. 1, pp. 289–299, 2002.
[88]  Q. Y. Liu, A. E. Schaffner, and J. L. Barker, “Kainate induces an intracellular Na+-activated K+ current in cultured embryonic rat hippocampal neurones,” The Journal of Physiology, vol. 510, part 3, pp. 721–734, 1998.
[89]  I. Rishal, T. Keren-Raifman, D. Yakubovich et al., “Na+ promotes the dissociation between GαGDP and Gβγ, activating G protein-gated K+ channels,” The Journal of Biological Chemistry, vol. 278, no. 6, pp. 3840–3845, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133