全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonsocial Functions of Hypothalamic Oxytocin

DOI: 10.1155/2013/179272

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oxytocin (OXT) is a hypothalamic neuropeptide composed of nine amino acids. The functions of OXT cover a variety of social and nonsocial activity/behaviors. Therapeutic effects of OXT on aberrant social behaviors are attracting more attention, such as social memory, attachment, sexual behavior, maternal behavior, aggression, pair bonding, and trust. The nonsocial behaviors/functions of brain OXT have also received renewed attention, which covers brain development, reproduction, sex, endocrine, immune regulation, learning and memory, pain perception, energy balance, and almost all the functions of peripheral organ systems. Coordinating with brain OXT, locally produced OXT also involves the central and peripheral actions of OXT. Disorders in OXT secretion and functions can cause a series of aberrant social behaviors, such as depression, autism, and schizophrenia as well as disturbance of nonsocial behaviors/functions, such as anorexia, obesity, lactation failure, osteoporosis, diabetes, and carcinogenesis. As more and more OXT functions are identified, it is essential to provide a general view of OXT functions in order to explore the therapeutic potentials of OXT. In this review, we will focus on roles of hypothalamic OXT on central and peripheral nonsocial functions. 1. Introduction Recent progress in studying therapeutic potential of hypothalamic nonaneuropeptide oxytocin has resumed our enthusiasm of its classical physiological functions. In the hypothalamus, OXT is predominantly expressed in two types of neurons, that is, magnocellular neurons in the paraventricular (PVN) and supraoptic (SON) nuclei, and parvocellular neurons in the parvocellular division of the PVN. In magnocellular OXT neurons, OXT and its carrier, neurophysin I, are packaged in membrane-bound large dense-core vesicles and transported down the long axons to the nerve endings in the posterior pituitary or neurohypophysis [1]. In response to increased activity of OXT neurons, OXT is released from the neurohypophysis into the blood [2] to act on variety of peripheral tissues. The magnocellular neurons and the neurohypophysis that contain OXT and its partner peptide, vasopressin (VP, antidiuretic hormone) together form the hypothalamoneurohypophysial system. Lately, OXT is found to be released into other regions of brain [3–5], likely from the terminals of the OXT neurons of the parvocellular division of the PVN and axon collaterals and distal dendrites of magnocellular neurons [6]. In addition to the hypothalamic origin, OXT is also produced in extrahypothalamic regions and peripheral

References

[1]  M. J. Brownstein, J. T. Russell, and H. Gainer, “Synthesis, transport and release of posterior pituitary hormones,” Science, vol. 207, no. 4429, pp. 373–378, 1980.
[2]  M. V. Sofroniew and W. Glasmann, “Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocin or neurophysin in the rat,” Neuroscience, vol. 6, no. 4, pp. 619–643, 1981.
[3]  P. Richard, F. Moos, and M. J. Freund-Mercier, “Central effects of oxytocin,” Physiological Reviews, vol. 71, no. 2, pp. 331–370, 1991.
[4]  I. Neumann, M. Ludwig, M. Engelmann, Q. J. Pittman, and R. Landgraf, “Simultaneous microdialysis in blood and brain: oxytocin and vasopressin release in response to central and peripheral osmotic stimulation and suckling in the rat,” Neuroendocrinology, vol. 58, no. 6, pp. 637–645, 1993.
[5]  A. P. C. da Costa, R. G. Guevara-Guzman, S. Ohkura, J. A. Goode, and K. M. Kendrick, “The role of oxytocin release in the paraventricular nucleus in the control of maternal behaviour in the sheep,” Journal of Neuroendocrinology, vol. 8, no. 3, pp. 163–177, 1996.
[6]  N. Sabatier, C. Caquineau, A. J. Douglas, and G. Leng, “Oxytocin released from magnocellular dendrites: a potential modulator of α-melanocyte-stimulating hormone behavioral actions?” Annals of the New York Academy of Sciences, vol. 994, pp. 218–224, 2003.
[7]  G. Gimpl and F. Fahrenholz, “The oxytocin receptor system: structure, function, and regulation,” Physiological Reviews, vol. 81, no. 2, pp. 629–683, 2001.
[8]  T. Kimura, F. Saji, K. Nishimori et al., “Molecular regulation of the oxytocin receptor in peripheral organs,” Journal of Molecular Endocrinology, vol. 30, no. 2, pp. 109–115, 2003.
[9]  Y. J. Jeng and M. S. Soloff, “Characterization of the cyclic adenosine monophosphate target site in the oxytocin receptor gene in rabbit amnion,” Biology of Reproduction, vol. 81, no. 3, pp. 473–479, 2009.
[10]  N. Tom and S. J. Assinder, “Oxytocin in health and disease,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 2, pp. 202–205, 2010.
[11]  T. R. Insel, “The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior,” Neuron, vol. 65, no. 6, pp. 768–779, 2010.
[12]  A. Campbell, “Oxytocin and human social behavior,” Personality and Social Psychology Review, vol. 14, pp. 281–295, 2010.
[13]  O. J. Bosch and I. D. Neumann, “Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action,” Hormones and Behavior, vol. 61, pp. 293–303, 2012.
[14]  C. F. Zink and A. Meyer-Lindenberg, “Human neuroimaging of oxytocin and vasopressin in social cognition,” Hormones and Behavior, vol. 61, pp. 400–409, 2012.
[15]  H. Yamasue, J. R. Yee, R. Hurlemann et al., “Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction,” The Journal of Neuroscience, vol. 32, pp. 14109–14117, 2012.
[16]  B. M. Stoesz, J. F. Hare, and W. M. Snow, “Neurophysiological mechanisms underlying affiliative social behavior: insights from comparative research,” Neuroscience & Biobehavioral Reviews, vol. 37, pp. 123–132, 2013.
[17]  R. Kumsta and M. Heinrichs, “Oxytocin, stress and social behavior: neurogenetics of the human oxytocin system,” Current Opinion in Neurobiology, vol. 23, pp. 11–16, 2013.
[18]  R. Tyzio, R. Cossart, I. Khalilov et al., “Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery,” Science, vol. 314, no. 5806, pp. 1788–1792, 2006.
[19]  Y. F. Wang, X. B. Gao, and A. N. van den Pol, “Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons,” Journal of Neurophysiology, vol. 86, no. 3, pp. 1252–1265, 2001.
[20]  R. Nowak, M. Keller, and F. Levy, “Mother-young relationships in sheep: a model for a multidisciplinary approach of the study of attachment in mammals,” Journal of Neuroendocrinology, vol. 23, pp. 1042–1053, 2011.
[21]  M. Galbally, A. J. Lewis, M. V. Ijzendoorn, and M. Permezel, “The role of oxytocin in mother-infant relations: a systematic review of human studies,” Harvard Review of Psychiatry, vol. 19, no. 1, pp. 1–14, 2011.
[22]  E. C. Winkelmann-Duarte, A. S. Todeschin, M. C. Fernandes et al., “Plastic changes induced by neonatal handling in the hypothalamus of female rats,” Brain Research, vol. 1170, pp. 20–30, 2007.
[23]  J. T. Winslow and T. R. Insel, “The social deficits of the oxytocin knockout mouse,” Neuropeptides, vol. 36, no. 2-3, pp. 221–229, 2002.
[24]  D. de Wied, “Behavioural actions of neurohypophysial peptides,” Proceedings of the Royal Society B, vol. 210, pp. 183–195, 1980.
[25]  L. F. de Oliveira, C. Camboim, F. Diehl, A. R. Consiglio, and J. A. Quillfeldt, “Glucocorticoid-mediated effects of systemic oxytocin upon memory retrieval,” Neurobiology of Learning and Memory, vol. 87, no. 1, pp. 67–71, 2007.
[26]  M. Lukas, I. Toth, A. H. Veenema, and I. D. Neumann, “Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics,” Psychoneuroendocrinology, 2012.
[27]  C. Modahl, L. Green, D. Fein et al., “Plasma oxytocin levels in autistic children,” Biological Psychiatry, vol. 43, no. 4, pp. 270–277, 1998.
[28]  L. Green, D. Fein, C. Modahl, C. Feinstein, L. Waterhouse, and M. Morris, “Oxytocin and autistic disorder: alterations in peptide forms,” Biological Psychiatry, vol. 50, no. 8, pp. 609–613, 2001.
[29]  S. G. Gregory, J. J. Connelly, A. J. Towers et al., “Genomic and epigenetic evidence for oxytocin receptor deficiency in autism,” BMC Medicine, vol. 7, article 62, 2009.
[30]  J. J. Green and E. Hollander, “Autism and oxytocin: new developments in translational approaches to therapeutics,” Neurotherapeutics, vol. 7, no. 3, pp. 250–257, 2010.
[31]  K. Stefanidis, D. Loutradis, V. Anastasiadou et al., “Oxytocin receptor- and Oct-4-expressing cells in human amniotic fluid,” Gynecological Endocrinology, vol. 24, no. 5, pp. 280–284, 2008.
[32]  K. Stefanidis, D. Loutradis, V. Anastasiadou et al., “Embryoid bodies from mouse stem cells express oxytocin receptor, Oct-4 and DAZL,” BioSystems, vol. 98, no. 2, pp. 122–126, 2009.
[33]  H. Martens, O. Kecha, C. Charlet-Renard, M. P. Defresne, and V. Geenen, “Phosphorylation of proteins induced in a murine pre-T cell line by neurohypophysial peptides,” Advances in Experimental Medicine and Biology, vol. 449, pp. 247–249, 1998.
[34]  C. Elabd, A. Basillais, H. Beaupied et al., “Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis,” Stem Cells, vol. 26, no. 9, pp. 2399–2407, 2008.
[35]  N. Ybarra, J. R. del Castillo, and E. Troncy, “Involvement of the nitric oxide-soluble guanylyl cyclase pathway in the oxytocin-mediated differentiation of porcine bone marrow stem cells into cardiomyocytes,” Nitric Oxide, vol. 24, no. 1, pp. 25–33, 2011.
[36]  Y. S. Kim, J. S. Kwon, M. H. Hong et al., “Promigratory activity of oxytocin on umbilical cord blood-derived mesenchymal stem cells,” Artificial Organs, vol. 34, no. 6, pp. 453–461, 2010.
[37]  Y. S. Kim, Y. Ahn, J. S. Kwon et al., “Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury,” Cells Tissues Organs, vol. 195, pp. 428–442, 2012.
[38]  D. F. Swaab, “Ageing of the human hypothalamus,” Hormone Research, vol. 43, no. 1–3, pp. 8–11, 1995.
[39]  H. U. Haussler, G. F. Jirikowski, and J. D. Caldwell, “Sex differences among oxytocin-immunoreactive neuronal systems in the mouse hypothalamus,” Journal of Chemical Neuroanatomy, vol. 3, no. 4, pp. 271–276, 1990.
[40]  S. Uhl-Bronner, E. Waltisperger, G. Martínez-Lorenzana, M. Condes Lara, and M. J. Freund-Mercier, “Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of the rat,” Neuroscience, vol. 135, no. 1, pp. 147–154, 2005.
[41]  J. S. Brown Jr., “Effects of bisphenol-A and other endocrine disruptors compared with abnormalities of schizophrenia: an endocrine-disruption theory of schizophrenia,” Schizophrenia Bulletin, vol. 35, no. 1, pp. 256–278, 2009.
[42]  R. Huffmeijer, M. H. van Ijzendoorn, and M. J. Bakermans-Kranenburg, “Ageing and oxytocin: a call for extending human oxytocin research to ageing populations—a mini-review,” Gerontology, vol. 59, pp. 32–39, 2013.
[43]  L. Calza, L. Giardino, A. Velardo, N. Battistini, and P. Marrama, “Influence of aging on the neurochemical organization of the rat paraventricular nucleus,” Journal of Chemical Neuroanatomy, vol. 3, no. 3, pp. 215–231, 1990.
[44]  R. Sakakibara, T. Uchiyama, T. Yamanishi, and M. Kishi, “Genitourinary dysfunction in Parkinson's disease,” Movement Disorders, vol. 25, no. 1, pp. 2–12, 2010.
[45]  K. T. Higa, E. Mori, F. F. Viana, M. Morris, and L. C. Michelini, “Baroreflex control of heart rate by oxytocin in the solitary-vagal complex,” American Journal of Physiology, vol. 282, no. 2, pp. R537–R545, 2002.
[46]  L. C. Michelini, “Differential effects of vasopressinergic and oxytocinergic pre-autonomic neurons on circulatory control: reflex mechanisms and changes during exercise,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 4, pp. 369–376, 2007.
[47]  K. C. Light, K. M. Grewen, and J. A. Amico, “More frequent partner hugs and higher oxytocin levels are linked to lower blood pressure and heart rate in premenopausal women,” Biological Psychology, vol. 69, no. 1, pp. 5–21, 2005.
[48]  A. F. Jonasson, L. Edwall, and K. Uvnas-Moberg, “Topical oxytocin reverses vaginal atrophy in postmenopausal women: a double-blind randomized pilot study,” Menopause International, vol. 17, pp. 120–125, 2011.
[49]  A. M. Dorton, “The pituitary gland: embryology, physiology, and pathophysiology,” Neonatal Network, vol. 19, no. 2, pp. 9–17, 2000.
[50]  G. T. Ooi, N. Tawadros, and R. M. Escalona, “Pituitary cell lines and their endocrine applications,” Molecular and Cellular Endocrinology, vol. 228, no. 1-2, pp. 1–21, 2004.
[51]  A. J. Burlet, M. Jhanwar-Uniyal, M. Chapleur-Chateau, C. R. Burlet, and S. F. Leibowitz, “Effect of food deprivation and refeeding on the concentration of vasopressin and oxytocin in discrete hypothalamic sites,” Pharmacology Biochemistry and Behavior, vol. 43, no. 3, pp. 897–905, 1992.
[52]  C. T. Wotjak, M. Kubota, G. Kohl, and R. Landgraf, “Release of vasopressin from supraoptic neurons within the median eminence in vivo. A combined microdialysis and push-pull perfusion study in the rat,” Brain Research, vol. 726, no. 1-2, pp. 237–241, 1996.
[53]  M. Vecsernyés, G. Nagy, L. Mészáros et al., “Suckling-induced changes in oxytocin and alpha-melanocyte-stimulating hormone contents of the median eminence and various lokes of the pituitary gland,” Acta Pharmaceutica Hungarica, vol. 71, no. 2, pp. 201–204, 2001.
[54]  F. A. Antoni, “Oxytocin receptors in rat adenohypophysis: evidence from radioligand binding studies,” Endocrinology, vol. 119, no. 5, pp. 2393–2395, 1986.
[55]  C. A. Johnston, K. D. Fagin, and A. Negro-Vilar, “Differential effect of neurointermediate lobectomy on central oxytocin and vasopressin,” Neuroscience Letters, vol. 113, no. 1, pp. 101–106, 1990.
[56]  I. D. Neumann, A. Wigger, L. Torner, F. Holsboer, and R. Landgraf, “Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus,” Journal of Neuroendocrinology, vol. 12, no. 3, pp. 235–243, 2000.
[57]  M. Quirin, J. Kuhl, and R. Düsing, “Oxytocin buffers cortisol responses to stress in individuals with impaired emotion regulation abilities,” Psychoneuroendocrinology, vol. 36, no. 6, pp. 898–904, 2011.
[58]  S. E. Chadio and F. A. Antoni, “Specific oxytocin agonist stimulates prolactin release but has no effect on inositol phosphate accumulation in isolated rat anterior pituitary cells,” Journal of Molecular Endocrinology, vol. 10, no. 2, pp. 107–114, 1993.
[59]  Z. He, M. Fernandez-Fuente, M. Strom, L. Cheung, I. C. Robinson, and P. Le Tissier, “Continuous on-line monitoring of secretion from rodent pituitary endocrine cells using fluorescent protein surrogate markers,” Journal of Neuroendocrinology, vol. 23, no. 3, pp. 197–207, 2011.
[60]  S. Schimchowitsch, M. E. Stoeckel, G. Schmitt, and A. Porte, “Stimulatory control by oxytocin (or an analog peptide) of the pituitary intermediate lobe in rabbits. Inhibitory role of serotonin,” Comptes Rendus de l'Académie des Sciences. Series III, vol. 300, no. 7, pp. 283–286, 1985.
[61]  J. J. Evans, R. A. Reid, S. A. Wakeman, L. B. Croft, and P. S. Benny, “Evidence that oxytocin is a physiological component of LH regulation in non-pregnant women,” Human Reproduction, vol. 18, no. 7, pp. 1428–1431, 2003.
[62]  R. Liedman, S. R. Hansson, D. Howe et al., “Reproductive hormones in plasma over the menstrual cycle in primary dysmenorrhea compared with healthy subjects,” Gynecological Endocrinology, vol. 24, no. 9, pp. 508–513, 2008.
[63]  F. Moos, M. J. Freund-Mercier, Y. Guerne, J. M. Guerné, M. E. Stoeckel, and P. Richard, “Release of oxytocin and vasopressin by magnocellular nuclei in vitro: specific facilitatory effect of oxytocin on its own release,” Journal of Endocrinology, vol. 102, no. 1, pp. 63–72, 1984.
[64]  M. P. Carrera-González, M. J. Ramírez-Expósito, J. M. de Saavedra, R. Sánchez-Agesta, M. D. Mayas, and J. M. Martínez-Martos, “Hypothalamus-pituitary-thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system,” Tumour Biology, vol. 32, no. 3, pp. 543–549, 2011.
[65]  A. L. Hulting, E. Grenb?ck, J. Pineda et al., “Effect of oxytocin on growth hormone release in vitro,” Regulatory Peptides, vol. 67, no. 2, pp. 69–73, 1996.
[66]  G. Aguilera, “Regulation of pituitary ACTH secretion during chronic stress,” Frontiers in Neuroendocrinology, vol. 15, no. 4, pp. 321–350, 1994.
[67]  H. K. Caldwell, H. J. Lee, A. H. Macbeth, and W. S. Young III, “Vasopressin: behavioral roles of an “original” neuropeptide,” Progress in Neurobiology, vol. 84, no. 1, pp. 1–24, 2008.
[68]  D. W. Wacker, M. Engelmann, V. A. Tobin, S. L. Meddle, and M. Ludwig, “Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus,” Annals of the New York Academy of Sciences, vol. 1220, no. 1, pp. 106–116, 2011.
[69]  D. J. Zheng, B. Larsson, S. M. Phelps, and A. G. Ophir, “Female alternative mating tactics, reproductive success and nonapeptide receptor expression in the social decision-making network,” Behavioural Brain Research, vol. 246, pp. 139–147, 2013.
[70]  E. A. Hammock, C. S. Law, and P. Levitt, “Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR,” Hormones and Behavior, vol. 63, pp. 352–360, 2013.
[71]  Y. F. Wang, L. X. Liu, and H. P. Yang, “Neurophysiological involvement in hypervolemic hyponatremia-evoked by hypersecretion of vasopressin,” Translational Biomedicine, vol. 2, p. 3, 2011.
[72]  J. C. Schiltz, G. E. Huffman, E. M. Stricker, and A. F. Sved, “Decreases in arterial pressure activate oxytocin neurons in conscious rats,” American Journal of Physiology, vol. 273, no. 4, pp. R1474–R1483, 1997.
[73]  J. Dohanics, G. E. Hoffman, and J. G. Verbalis, “Chronic hyponatremia reduces survival of magnocellular vasopressin and oxytocin neurons after axonal injury,” Journal of Neuroscience, vol. 16, no. 7, pp. 2373–2380, 1996.
[74]  Y. F. Wang and G. I. Hatton, “Mechanisms underlying oxytocin-induced excitation of supraoptic neurons: prostaglandin mediation of actin polymerization,” Journal of Neurophysiology, vol. 95, no. 6, pp. 3933–3947, 2006.
[75]  C. Li, W. Wang, S. N. Summer et al., “Molecular mechanisms of antidiuretic effect of oxytocin,” Journal of the American Society of Nephrology, vol. 19, no. 2, pp. 225–232, 2008.
[76]  L. N. Ivanova, “Vasopressin: molecular mechanisms of antidiuretic effect,” Rossi?skii Fiziologicheski? Zhurnal Imeni I.M. Sechenova, vol. 97, no. 3, pp. 235–262, 2011.
[77]  J. Gutkowska and M. Jankowski, “Oxytocin revisited: its role in cardiovascular regulation,” Journal of Neuroendocrinology, vol. 24, pp. 599–608, 2012.
[78]  P. Siaud, R. Puech, I. Assenmacher, and G. Alonso, “Microinjection of oxytocin into the dorsal vagal complex decreases pancreatic insulin secretion,” Brain Research, vol. 546, no. 2, pp. 190–194, 1991.
[79]  E. Bj?rkstrand, M. Eriksson, and K. Uvn?s-Moberg, “Evidence of a peripheral and a central effect of oxytocin on pancreatic hormone release in rats,” Neuroendocrinology, vol. 63, no. 4, pp. 377–383, 1996.
[80]  R. N. Fernando, J. Larm, A. L. Albiston, and S. Y. Chai, “Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system,” Journal of Comparative Neurology, vol. 487, no. 4, pp. 372–390, 2005.
[81]  L. Zambotti-Villela, S. C. Yamasaki, J. S. Villarroel, R. F. Alponti, and P. F. Silveira, “Aspartyl, arginyl and alanyl aminopeptidase activities in the hippocampus and hypothalamus of streptozotocin-induced diabetic rats,” Brain Research, vol. 1170, pp. 112–118, 2007.
[82]  C. L. Wu, C. R. Hung, F. Y. Chang, K. Y. F. Pau, and P. S. Wang, “Pharmacological effects of oxytocin on gastric emptying and intestinal transit of a non-nutritive liquid meal in female rats,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 367, no. 4, pp. 406–413, 2003.
[83]  D. G. Baskin, F. Kim, R. W. Gelling et al., “A new oxytocin-saporin cytotoxin for lesioning oxytocin-receptive neurons in the rat hindbrain,” Endocrinology, vol. 151, no. 9, pp. 4207–4213, 2010.
[84]  H. Hashimoto, T. Onaka, M. Kawasaki et al., “Effects of cholecystokinin (CCK)-8 on hypothalamic oxytocin-secreting neurons in rats lacking CCK-A receptor,” Autonomic Neuroscience, vol. 121, no. 1-2, pp. 16–25, 2005.
[85]  H. Yamashita, K. Inenaga, S. Okuya, Y. Hattori, and S. Yamamoto, “Effect of brain-gut peptides upon neurons in centrally regulating sites for drinking,” Archives of Histology and Cytology, vol. 52, supplement, pp. 121–127, 1989.
[86]  J. Antunes-Rodrigues, M. de Castro, L. L. K. Elias, M. M. Valen?a, and S. M. McCann, “Neuroendocrine control of body fluid metabolism,” Physiological Reviews, vol. 84, no. 1, pp. 169–208, 2004.
[87]  J. Antunes-Rodrigues, A. L. V. Favaretto, J. Gutkowska, and S. M. McCann, “The neuroendocrine control of atrial natriuretic peptide release,” Molecular Psychiatry, vol. 2, no. 5, pp. 359–367, 1997.
[88]  C. Camerino, “Low sympathetic tone and obese phenotype in oxytocin-deficient mice,” Obesity, vol. 17, no. 5, pp. 980–984, 2009.
[89]  J. A. McCracken, E. E. Custer, J. A. Eldering, and A. G. Robinson, “The central oxytocin pulse generator: a pacemaker for the ovarian cycle,” Acta Neurobiologiae Experimentalis, vol. 56, no. 3, pp. 819–832, 1996.
[90]  M. S. Carmichael, R. Humbert, J. Dixen, G. Palmisano, W. Greenleaf, and J. M. Davidson, “Plasma oxytocin increases in the human sexual response,” Journal of Clinical Endocrinology and Metabolism, vol. 64, no. 1, pp. 27–31, 1987.
[91]  M. S. Carmichael, V. L. Warburton, J. Dixen, and J. M. Davidson, “Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity,” Archives of Sexual Behavior, vol. 23, no. 1, pp. 59–79, 1994.
[92]  J. J. Normandin and A. Z. Murphy, “Somatic genital reflexes in rats with a nod to humans: anatomy, physiology, and the role of the social neuropeptides,” Hormones and Behavior, vol. 59, no. 5, pp. 656–665, 2011.
[93]  M. R. Melis and A. Argiolas, “Central control of penile erection: a re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 3, pp. 939–955, 2011.
[94]  T. R. de Jong, J. G. Veening, B. Olivier, and M. D. Waldinger, “Oxytocin involvement in SSRI-induced delayed ejaculation: a review of animal studies,” Journal of Sexual Medicine, vol. 4, no. 1, pp. 14–28, 2007.
[95]  S. Succu, F. Sanna, A. Argiolas, and M. R. Melis, “Oxytocin injected into the hippocampal ventral subiculum induces penile erection in male rats by increasing glutamatergic neurotransmission in the ventral tegmental area,” Neuropharmacology, vol. 61, no. 1-2, pp. 181–188, 2011.
[96]  N. Magon and S. Kalra, “The orgasmic history of oxytocin: love, lust, and labor,” Indian Journal of Endocrinology and Metabolism, vol. 15, supplement 3, pp. S156–S161, 2011.
[97]  H. A. Rupp, T. W. James, E. D. Ketterson, D. R. Sengelaub, B. Ditzen, and J. R. Heiman, “Lower sexual interest in postpartum women: relationship to amygdala activation and intranasal oxytocin,” Hormones and Behavior, vol. 63, pp. 114–121, 2013.
[98]  J. A. Russell, G. Leng, and A. J. Douglas, “The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy,” Frontiers in Neuroendocrinology, vol. 24, no. 1, pp. 27–61, 2003.
[99]  R. M. Kamel, “The onset of human parturition,” Archives of Gynecology and Obstetrics, vol. 281, no. 6, pp. 975–982, 2010.
[100]  F. Petraglia, A. Imperatore, and J. R. G. Challis, “Neuroendocrine mechanisms in pregnancy and parturition,” Endocrine Reviews, vol. 31, no. 6, pp. 783–816, 2010.
[101]  P. Arthur, M. J. Taggart, and B. F. Mitchell, “Oxytocin and parturition: a role for increased myometrial calcium and calcium sensitization?” Frontiers in Bioscience, vol. 12, no. 2, pp. 619–633, 2007.
[102]  V. Terzidou, A. M. Blanks, S. H. Kim, S. Thornton, and P. R. Bennett, “Labor and inflammation increase the expression of oxytocin receptor in human amnion,” Biology of Reproduction, vol. 84, no. 3, pp. 546–552, 2011.
[103]  W. S. Young III, E. Shepard, A. C. DeVries et al., “Targeted reduction of oxytocin expression provides insights into its physiological roles,” Advances in Experimental Medicine and Biology, vol. 449, pp. 231–240, 1998.
[104]  J. B. Wakerley, G. Clarke, and A. J. Summerlee, “Milk ejection and its control,” in The Physiology of Reproduction, E. Knobil and J. D. Neill, Eds., pp. 1131–1177, Raven Press, New York, NY, USA, 1994.
[105]  G. I. Hatton and Y. F. Wang, “Neural mechanisms underlying the milk ejection burst and reflex,” Progress in Brain Research, vol. 170, pp. 155–166, 2008.
[106]  Y. Takayanagi, M. Yoshida, I. F. Bielsky et al., “Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 16096–16101, 2005.
[107]  A. H. Macbeth, J. E. Stepp, H. J. Lee, W. S. Young III, and H. K. Caldwell, “Normal maternal behavior, but increased pup mortality, in conditional oxytocin receptor knockout females,” Behavioral Neuroscience, vol. 124, no. 5, pp. 677–685, 2010.
[108]  D. W. Lincoln and J. B. Wakerley, “Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat,” Journal of Physiology, vol. 250, no. 2, pp. 443–461, 1975.
[109]  Y. F. Wang, H. Negoro, and T. Higuchi, “Lesions of hypothalamic mammillary body desynchronise milk-ejection bursts of rat bilateral supraoptic oxytocin neurones,” Journal of Neuroendocrinology, vol. 25, pp. 67–75, 2013.
[110]  V. Belin and F. Moos, “Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization,” Journal of Physiology, vol. 377, pp. 369–390, 1986.
[111]  T. Higuchi, Y. Tadokoro, K. Honda, and H. Negoro, “Detailed analysis of blood oxytocin levels during suckling and parturition in the rat,” Journal of Endocrinology, vol. 110, no. 2, pp. 251–256, 1986.
[112]  J. A. Ford Jr., S. W. Kim, S. L. Rodriguez-Zas, and W. L. Hurley, “Quantification of mammary gland tissue size and composition changes after weaning in sows,” Journal of Animal Science, vol. 81, no. 10, pp. 2583–2589, 2003.
[113]  P. K. Theil, K. Sejrsen, W. L. Hurley, R. Labouriau, B. Thomsen, and M. T. S?rensen, “Role of suckling in regulating cell turnover and onset and maintenance of lactation in individual mammary glands of sows,” Journal of Animal Science, vol. 84, no. 7, pp. 1691–1698, 2006.
[114]  P. E. N. Rishel and P. Sweeney, “Comparison of breastfeeding rates among women delivering infants in military treatment facilities with and without lactation consultants,” Military Medicine, vol. 170, no. 5, pp. 435–438, 2005.
[115]  S. Ip, M. Chung, G. Raman et al., “Breastfeeding and maternal and infant health outcomes in developed countries,” Evidence Report/Technology Assessment, no. 153, pp. 1–186, 2007.
[116]  Y. F. Wang and G. I. Hatton, “Oxytocin, lactation and postpartum depression,” Frontiers in Neuroscience, vol. 3, pp. 252–253, 2009.
[117]  Y. F. Wang, “Oxytocin: the key to treating lactation-failure and associated diseases,” Translational Biomedicine-Video Lecture, 2010, http://www.veoh.com/watch/v20626669hGgpKgPR?h1.
[118]  A. Jean, “The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects,” Archives Internationales de Physiologie, de Biochimie et de Biophysique, vol. 99, no. 5, pp. A3–A52, 1991.
[119]  J. G. Kral, W. Paez, and B. M. Wolfe, “Vagal nerve function in obesity: therapeutic implications,” World Journal of Surgery, vol. 33, no. 10, pp. 1995–2006, 2009.
[120]  A. Kitamura, K. Torii, H. Uneyama, and A. Niijima, “Role played by afferent signals from olfactory, gustatory and gastrointestinal sensors in regulation of autonomic nerve activity,” Biological and Pharmaceutical Bulletin, vol. 33, no. 11, pp. 1778–1782, 2010.
[121]  M. Palkovits, “Interconnections between the neuroendocrine hypothalamus and the central autonomic system. Geoffrey Harris Memorial Lecture, Kitakyushu, Japan, October 1998,” Frontiers in Neuroendocrinology, vol. 20, pp. 270–295, 1999.
[122]  L. W. Swanson and B. K. Hartman, “Biochemical specificity in central pathways related to peripheral and intracerebral homeostatic functions,” Neuroscience Letters, vol. 16, no. 1, pp. 55–60, 1980.
[123]  B. A. Puder and R. E. Papka, “Hypothalamic paraventricular axons projecting to the female rat lumbosacral spinal cord contain oxytocin immunoreactivity,” Journal of Neuroscience Research, vol. 64, no. 1, pp. 53–60, 2001.
[124]  G. J. Norman, J. T. Cacioppo, J. S. Morris, W. B. Malarkey, G. G. Berntson, and A. C. Devries, “Oxytocin increases autonomic cardiac control: moderation by loneliness,” Biological Psychology, vol. 86, no. 3, pp. 174–180, 2011.
[125]  J. G. Veening, T. de Jong, and H. P. Barendregt, “Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review,” Physiology and Behavior, vol. 101, no. 2, pp. 193–210, 2010.
[126]  J. Born, T. Lange, W. Kern, G. P. McGregor, U. Bickel, and H. L. Fehm, “Sniffing neuropeptides: a transnasal approach to the human brain,” Nature Neuroscience, vol. 5, no. 6, pp. 514–516, 2002.
[127]  P. K. Olszewski, A. Klockars, H. B. Schi?th, and A. S. Levine, “Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior,” Pharmacology Biochemistry and Behavior, vol. 97, no. 1, pp. 47–54, 2010.
[128]  J. Yang, P. Li, J. Y. Liang et al., “Oxytocin in the periaqueductal grey regulates nociception in the rat,” Regulatory Peptides, vol. 169, no. 1–3, pp. 39–42, 2011.
[129]  Y. Han and L. C. Yu, “Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats,” Neuroscience Letters, vol. 454, no. 1, pp. 101–104, 2009.
[130]  J. W. Wang, T. Lundeberg, and L. C. Yu, “Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of μ-opioid receptor,” Regulatory Peptides, vol. 115, no. 3, pp. 153–159, 2003.
[131]  J. Yang, J. Y. Liang, X. Y. Zhang et al., “Oxytocin, but not arginine vasopressin is involving in the antinociceptive role of hypothalamic supraoptic nucleus,” Peptides, vol. 32, no. 5, pp. 1042–1046, 2011.
[132]  M. Zubrzycka, J. Szemraj, and A. Janecka, “Effect of tooth pulp and periaqueductal central gray stimulation on the expression of genes encoding the selected neuropeptides and opioid receptors in the mesencephalon, hypothalamus and thalamus in rats,” Brain Research, vol. 1382, pp. 19–28, 2011.
[133]  T. A. Baskerville and A. J. Douglas, “Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders,” CNS Neuroscience and Therapeutics, vol. 16, no. 3, pp. e92–e123, 2010.
[134]  M. H. Sukikara, M. D. Platero, N. S. Canteras, and L. F. Felicio, “Opiate regulation of behavioral selection during lactation,” Pharmacology Biochemistry and Behavior, vol. 87, no. 3, pp. 315–320, 2007.
[135]  M. Haney and K. A. Miczek, “Morphine effects on maternal aggression, pup care and analgesia in mice,” Psychopharmacology, vol. 98, no. 1, pp. 68–74, 1989.
[136]  C. H. Brown, P. J. Brunton, and J. A. Russell, “Rapid estradiol-17β modulation of opioid actions on the electrical and secretory activity of rat oxytocin neurons in vivo,” Neurochemical Research, vol. 33, no. 4, pp. 614–623, 2008.
[137]  C. H. Brown, J. A. Russell, and G. Leng, “Opioid modulation of magnocellular neurosecretory cell activity,” Neuroscience Research, vol. 36, no. 2, pp. 97–120, 2000.
[138]  G. Leng, C. H. Brown, N. P. Murphy, T. Onaka, and J. A. Russell, “Opioid-noradrenergic interactions in the control of oxytocin cells,” Advances in Experimental Medicine and Biology, vol. 395, pp. 95–104, 1995.
[139]  V. Tan?in, W. D. Kraetzl, and D. Schams, “Effects of morphine and naloxone on the release of oxytocin and on milk ejection in dairy cows,” Journal of Dairy Research, vol. 67, no. 1, pp. 13–20, 2000.
[140]  W. D. Kraetzl, V. Tancin, and D. Schams, “Inhibition of oxytocin release and milk let-down in postpartum primiparous cows is not abolished by naloxone,” Journal of Dairy Research, vol. 68, no. 4, pp. 559–568, 2001.
[141]  J. A. Mennella and M. Y. Pepino, “Short-term effects of alcohol consumption on the hormonal milieu and mood states in nulliparous women,” Alcohol, vol. 38, no. 1, pp. 29–36, 2006.
[142]  A. M. Dopico, J. R. Lemos, and S. N. Treistman, “Ethanol increases the activity of large conductance, Ca2+-activated K+ channels in isolated neurohypophysial terminals,” Molecular Pharmacology, vol. 49, no. 1, pp. 40–48, 1996.
[143]  H. Widmer, J. R. Lemos, and S. N. Treistman, “Ethanol reduces the duration of single evoked spikes by a selective inhibition of voltage-gated calcium currents in acutely dissociated supraoptic neurons of the rat,” Journal of Neuroendocrinology, vol. 10, no. 6, pp. 399–406, 1998.
[144]  Z. Sarnyai, “Oxytocin and neuroadaptation to cocaine,” Progress in Brain Research, vol. 119, pp. 449–466, 1998.
[145]  I. S. McGregor and M. T. Bowen, “Breaking the loop: oxytocin as a potential treatment for drug addiction,” Hormones and Behavior, vol. 61, pp. 331–339, 2012.
[146]  M. Febo, T. L. Stolberg, M. Numan, R. S. Bridges, P. Kulkarni, and C. F. Ferris, “Nursing stimulation is more than tactile sensation: it is a multisensory experience,” Hormones and Behavior, vol. 54, no. 2, pp. 330–339, 2008.
[147]  K. Uvnas-Moberg, S. Stock, M. Eriksson, A. Linden, S. Einarsson, and A. Kunavongkrit, “Plasma levels of oxytocin increase in response to suckling and feeding in dogs and sows,” Acta Physiologica Scandinavica, vol. 124, no. 3, pp. 391–398, 1985.
[148]  G. Alonso, A. Szafarczyk, and I. Assenmacher, “Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extrahypothalamic brain regions,” Neuroscience Letters, vol. 66, no. 3, pp. 251–256, 1986.
[149]  G. I. Hatton and Q. Z. Yang, “Activation of excitatory amino acid inputs to supraoptic neurons. I. Induced increases in dye-coupling in lactating, but not virgin or male rats,” Brain Research, vol. 513, no. 2, pp. 264–269, 1990.
[150]  B. K. Modney, Q. Z. Yang, and G. I. Hatton, “Activation of excitatory amino acid inputs to supraoptic neurons. II. Increased dye-copuling in maternally behaving virgin rats,” Brain Research, vol. 513, no. 2, pp. 270–273, 1990.
[151]  K. G. Smithson, M. L. Weiss, and G. I. Hatton, “Supraoptic nucleus afferents from the main olfactory bulb—I. Anatomical evidence from anterograde and retrograde tracers in rat,” Neuroscience, vol. 31, no. 2, pp. 277–287, 1989.
[152]  S. L. Meddle, G. Leng, J. R. Selvarajah, R. J. Bicknell, and J. A. Russell, “Direct pathways to the supraoptic nucleus from the brainstem and the main olfactory bulb are activated at parturition in the rat,” Neuroscience, vol. 101, no. 4, pp. 1013–1021, 2000.
[153]  A. Larrazolo-López, K. M. Kendrick, M. Aburto-Arciniega et al., “Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb,” Neuroscience, vol. 152, no. 3, pp. 585–593, 2008.
[154]  M. E. Modi and L. J. Young, “The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies,” Hormones and Behavior, vol. 61, no. 3, pp. 340–350, 2012.
[155]  J. Zhu, Y. Jiang, G. Xu, and X. Liu, “Intranasal administration: a potential solution for cross-BBB delivering neurotrophic factors,” Histology and Histopathology, vol. 27, pp. 537–548, 2012.
[156]  D. de Berardis, S. Marini, F. Iasevoli et al., “The role of intranasal oxytocin in the treatment of patients with schizophrenia: a systematic review,” CNS & Neurological Disorders—Drug Targets, vol. 12, no. 2, pp. 252–264, 2013.
[157]  L. Schulze, A. Lischke, J. Greif, S. C. Herpertz, M. Heinrichs, and G. Domes, “Oxytocin increases recognition of masked emotional faces,” Psychoneuroendocrinology, vol. 36, no. 9, pp. 1378–1382, 2011.
[158]  A. Lischke, C. Berger, K. Prehn, M. Heinrichs, S. C. Herpertz, and G. Domes, “Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eye-gaze unaffected,” Psychoneuroendocrinology, vol. 37, no. 4, pp. 475–481, 2012.
[159]  J. S. Kanwal and P. D. P. Rao, “Oxytocin within auditory nuclei: a neuromodulatory function in sensory processing?” NeuroReport, vol. 13, no. 17, pp. 2193–2197, 2002.
[160]  P. Campbell, A. G. Ophir, and S. M. Phelps, “Central vasopressin and oxytocin receptor distributions in two species of singing mice,” Journal of Comparative Neurology, vol. 516, no. 4, pp. 321–333, 2009.
[161]  M. Tops, M. H. van Ijzendoorn, M. M. Riem, M. A. Boksem, and M. J. Bakermans-Kranenburg, “Oxytocin receptor gene associated with the efficiency of social auditory processing,” Front Psychiatry, vol. 2, p. 60, 2011.
[162]  J. Prilusky and R. P. Deis, “Inhibition of milk ejection by a visual stimulus in lactating rats: implication of the pineal gland,” Brain Research, vol. 251, no. 2, pp. 313–318, 1982.
[163]  A. Sclafani, L. Rinaman, R. R. Vollmer, and J. A. Amico, “Oxytocin knockout mice demonstrate enhanced intake of sweet and nonsweet carbohydrate solutions,” American Journal of Physiology, vol. 292, no. 5, pp. R1828–R1833, 2007.
[164]  M. S. Sinclair, I. Perea-Martinez, G. Dvoryanchikov et al., “Oxytocin signaling in mouse taste buds,” PLoS One, vol. 5, Article ID e11980, 2010.
[165]  P. K. Olszewski, Q. Shi, C. J. Billington, and A. S. Levine, “Opioids affect acquisition of LiCl-induced conditioned taste aversion: involvement of OT and VP systems,” American Journal of Physiology, vol. 279, no. 4, pp. R1504–R1511, 2000.
[166]  W. Savino, E. Arzt, and M. Dardenne, “Immunoneuroendocrine connectivity: the paradigm of the thymus- hypothalamus/pituitary axis,” NeuroImmunoModulation, vol. 6, no. 1-2, pp. 126–136, 1999.
[167]  I. Hansenne, G. Rasier, C. Péqueux et al., “Ontogenesis and functional aspects of oxytocin and vasopressin gene expression in the thymus network,” Journal of Neuroimmunology, vol. 158, no. 1-2, pp. 67–75, 2005.
[168]  A. Szeto, D. A. Nation, A. J. Mendez et al., “Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells,” American Journal of Physiology, vol. 295, no. 6, pp. E1495–E1501, 2008.
[169]  S. Lacroix, L. Vallières, and S. Rivest, “C-fos mRNA pattern and corticotropin-releasing factor neuronal activity throughout the brain of rats injected centrally with a prostaglandin of E2 type,” Journal of Neuroimmunology, vol. 70, no. 2, pp. 163–179, 1996.
[170]  K. Pardy, D. Murphy, D. Carter, and K. M. Hui, “The influence of interleukin-2 on vasopressin and oxytocin gene expression in the rodent hypothalamus,” Journal of Neuroimmunology, vol. 42, no. 2, pp. 131–138, 1993.
[171]  A. Benrick, E. Schéle, S. B. Pinnock et al., “Interleukin-6 gene knockout influences energy balance regulating peptides in the hypothalamic paraventricular and supraoptic nuclei,” Journal of Neuroendocrinology, vol. 21, no. 7, pp. 620–628, 2009.
[172]  A. Macciò, C. Madeddu, P. Chessa, F. Panzone, P. Lissoni, and G. Mantovani, “Oxytocin both increases proliferative response of peripheral blood lymphomonocytes to phytohemagglutinin and reverses immunosuppressive estrogen activity,” In Vivo, vol. 24, no. 2, pp. 157–163, 2010.
[173]  I. Huitinga, M. van der Cammen, L. Salm et al., “IL-1β immunoreactive neurons in the human hypothalamus: reduced numbers in multiple sclerosis,” Journal of Neuroimmunology, vol. 107, no. 1, pp. 8–20, 2000.
[174]  D. A. Nation, A. Szeto, A. J. Mendez et al., “Oxytocin attenuates atherosclerosis and adipose tissue inflammation in socially isolated ApoE-/- mice,” Psychosomatic Medicine, vol. 72, no. 4, pp. 376–382, 2010.
[175]  M. Jankowski, V. Bissonauth, L. Gao et al., “Anti-inflammatory effect of oxytocin in rat myocardial infarction,” Basic Research in Cardiology, vol. 105, no. 2, pp. 205–218, 2010.
[176]  N. Sabatier, G. Leng, and J. Menzies, “Oxytocin, feeding, and satiety,” Frontiers in Endocrinology, vol. 4, p. 35, 2013.
[177]  K. Nishimori, Y. Takayanagi, M. Yoshida, Y. Kasahara, L. J. Young, and M. Kawamata, “New aspects of oxytocin receptor function revealed by knockout mice: sociosexual behaviour and control of energy balance,” Progress in Brain Research, vol. 170, pp. 79–90, 2008.
[178]  N. Deblon, C. Veyrat-Durebex, L. Bourgoin et al., “Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats,” PLoS One, vol. 6, Article ID e25565, 2011.
[179]  M. Eckertova, M. Ondrejcakova, K. Krskova, S. Zorad, and D. Jezova, “Subchronic treatment of rats with oxytocin results in improved adipocyte differentiation and increased gene expression of factors involved in adipogenesis,” British Journal of Pharmacology, vol. 162, no. 2, pp. 452–463, 2011.
[180]  T. D. Hoyda, M. Fry, R. S. Ahima, and A. V. Ferguson, “Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus,” Journal of Physiology, vol. 585, no. 3, pp. 805–816, 2007.
[181]  J. P. H. Burbach, S. M. Luckman, D. Murphy, and H. Gainer, “Gene regulation in the magnocellular hypothalamo-neurohypophysial system,” Physiological Reviews, vol. 81, no. 3, pp. 1197–1267, 2001.
[182]  J. B. Wakerley, G. Clarke, and A. J. S. Summerlee, “Milk ejection and its control,” in The Physiology of Reproduction, E. Knobil and J. D. Neill, Eds., pp. 2283–2322, Raven, New York, NY, USA, 1994.
[183]  S. L. Bealer, W. E. Armstrong, and W. R. Crowley, “Oxytocin release in magnocellular nuclei: neurochemical mediators and functional significance during gestation,” American Journal of Physiology, vol. 299, no. 2, pp. R452–R458, 2010.
[184]  M. S. Soloff, Y. J. Jeng, J. A. Copland, Z. Strakova, and S. Hoare, “Signal pathways mediating oxytocin stimulation of prostaglandin synthesis in select target cells,” Experimental Physiology, vol. 85, pp. 51S–58S, 2000.
[185]  A. Meyer-Lindenberg, G. Domes, P. Kirsch, and M. Heinrichs, “Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine,” Nature Reviews Neuroscience, vol. 12, pp. 524–538, 2011.
[186]  A. H. Veenema, “Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors,” Hormones and Behavior, vol. 61, no. 3, pp. 304–312, 2012.
[187]  K. Macdonald and D. Feifel, “Helping oxytocin deliver: considerations in the development of oxytocin-based therapeutics for brain disorders,” Frontiers in Neuroscience, vol. 7, p. 35, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133