全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantification of Neocortical Slice Diffusion Characteristics Using Pharmacokinetic and Pharmacodynamic Modelling

DOI: 10.1155/2013/759640

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pharmacological brain slice experiments are complicated by the need to ensure adequate drug delivery deep into the healthy layers of the tissue. Because tissue slices have no blood supply, this is achieved solely by passive drug diffusion. The aim of this study was to determine whether pharmacokinetic/pharmacodynamic (PKPD) modeling could be adapted to estimate drug diffusion times in neocortical brain slices. No-magnesium seizure-like event (SLE) activity was generated in 41 slices (400?μm). Two anesthetic agents, etomidate (24?μM, ) and thiopental (250?μM, ), and magnesium ions ( ) were delivered to effect reversible reductions in SLE frequency. Concentration-effect hysteresis loops were collapsed using a first order rate constant model and equilibrium half-lives ( ) derived. The values obtained were consistent with expectations. The median (range) of 83.1 (19.4–330.1)?min for etomidate is in keeping with its known slow diffusion into brain slice tissue. Values for etomidate and thiopental (111.8 (27.8–198.0)?min) were similar, while magnesium had a significantly faster equilibration rate ( of 26.1 (8.6–77.0)?min) compared to the anesthetics, as expected for a simple ion. In conclusion, PKPD modeling is a simple and practical method that can be applied to brain slice experiments for investigating drug diffusion characteristics. 1. Introduction Characterisation of drug effects in in vitro brain slice experiments is complicated by the absence of a blood supply to the tissue. This means that drugs must be delivered to the tissue by passive diffusion via the perfusion solution. Because substances diffuse at different rates according to their physicochemical properties, it can be difficult to know how long to expose the tissue in order to achieve drug penetration into the healthiest layers of the slice—approximately the middle 100?μm for a 400?μm thick slice [1]. For drugs that diffuse slowly, there is a risk that a negative result will be spuriously attributed to an inactive drug, when in fact it never reached its site of action in the tissue. Directly measuring drug concentrations in tissue slicesnecessitates methodologies that are time consuming and complex and cannot realistically be applied to each and every drug one may want to test. This motivated us to explore alternative, simpler approaches for estimating drug diffusion in brain slice tissue. To this end, we have borrowed a pharmacological technique known as pharmacokinetic/pharmacodynamic (PKPD) modelling, which is used clinically to describe the relationship between the time course of drug

References

[1]  J. M. Cayce, C. C. Kao, J. D. Malphrus, P. E. Konrad, A. Mahadevan-Jansen, and E. D. Jansen, “Infrared neural stimulation of thalamocortical brain slices,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 16, no. 3, pp. 565–572, 2010.
[2]  C. Benkwitz, M. Liao, M. J. Laster, J. M. Sonner, E. I. Eger II, and R. A. Pearce, “Determination of the EC50 amnesic concentration of etomidate and its diffusion profile in brain tissue,” Anesthesiology, vol. 106, no. 1, pp. 114–123, 2007.
[3]  L. G. Nowak and J. Bullier, “Spread of stimulating current in the cortical grey matter of rat visual cortex studied on a new in vitro slice preparation,” Journal of Neuroscience Methods, vol. 67, no. 2, pp. 237–248, 1996.
[4]  L. J. Voss, M. Brock, C. Carlsson, A. Steyn-Ross, M. Steyn-Ross, and J. W. Sleigh, “Investigating paradoxical hysteresis effects in the mouse neocortical slice model,” European Journal of Pharmacology, vol. 675, no. 1–3, pp. 26–31, 2012.
[5]  I. Kissin, S. Motomura, D. F. Aultman, and J. G. Reves, “Inotropic and anesthetic potencies of etomidate and thiopental in dogs,” Anesthesia and Analgesia, vol. 62, no. 11, pp. 961–965, 1983.
[6]  W. S. Zimmt and N. Odegaard, “Conductivity measurements: a discussion and comparison of two instruments used to follow the removal of soluble salts from ceramics,” Western Association for Art Conservation, vol. 15, no. 3, pp. 24–28, 1993.
[7]  P. de Paepe, F. M. Belpaire, G. van Hoey, P. A. Boon, and W. A. Buylaert, “Influence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of etomidate in the rat,” Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 3, pp. 1048–1053, 1999.
[8]  K. Kaneda, S. Yamashita, S. Woo, and T. H. Han, “Population pharmacokinetics and pharmacodynamics of brief etomidate infusion in healthy volunteers,” Journal of Clinical Pharmacology, vol. 51, no. 4, pp. 482–491, 2011.
[9]  P. O. Maitre, M. Buhrer, S. L. Shafer, and D. R. Stanski, “Estimating the rate of thiopental blood-brain equilibration using pseudo steady state serum concentrations,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 18, no. 3, pp. 175–187, 1990.
[10]  D. R. Stanski, R. J. Hudson, T. D. Homer, L. J. Saidman, and E. Meathe, “Pharmacodynamic modeling of thiopental anesthesia,” Journal of Pharmacokinetics and Biopharmaceutics, vol. 12, no. 2, pp. 223–240, 1984.
[11]  R. N. Upton and G. L. Ludbrook, “A model of the kinetics and dynamics of induction of anaesthesia in sheep: variable estimation for thiopental and comparison with propofol,” British Journal of Anaesthesia, vol. 82, no. 6, pp. 890–899, 1999.
[12]  W. Meier-Ruge, O. Hunziker, U. Schulz, H.-J. Tobler, and A. Schweizer, “Stereological changes in the capillary network and nerve cells of the aging human brain,” Mechanisms of Ageing and Development, vol. 14, no. 1-2, pp. 233–243, 1980.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133