全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Detection of Early Ischemic Changes in Noncontrast CT Head Improved with “Stroke Windows”

DOI: 10.1155/2014/654980

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. Noncontrast head CT (NCCT) is the standard radiologic test for patients presenting with acute stroke. Early ischemic changes (EIC) are often overlooked on initial NCCT. We determine the sensitivity and specificity of improved EIC detection by a standardized method of image evaluation (Stroke Windows). Methods. We performed a retrospective chart review to identify patients with acute ischemic stroke who had NCCT at presentation. EIC was defined by the presence of hyperdense MCA/basilar artery sign; sulcal effacement; basal ganglia/subcortical hypodensity; and loss of cortical gray-white differentiation. NCCT was reviewed with standard window settings and with specialized Stroke Windows. Results. Fifty patients (42% females, 58% males) with a mean NIHSS of 13.4 were identified. EIC was detected in 9 patients with standard windows, while EIC was detected using Stroke Windows in 35 patients (18% versus 70%; ). Hyperdense MCA sign was the most commonly reported EIC; it was better detected with Stroke Windows (14% and 36%; ). Detection of the remaining EIC also improved with Stroke Windows (6% and 46%; ). Conclusions. Detection of EIC has important implications in diagnosis and treatment of acute ischemic stroke. Utilization of Stroke Windows significantly improved detection of EIC. 1. Introduction Noncontrast head CT (NCCT) is the first-line diagnostic test for emergency evaluation of acute stroke due to its speed of imaging, widespread availability, and low cost. The window width and center level settings—measured in Hounsfield units: HUs—used for computed tomographic (CT) scan review are known to influence both lesion conspicuity and diagnostic accuracy [1]. Numerous studies suggest that detection of early ischemic change (EIC) on NCCT can predict both functional outcome and the risk of intracranial hemorrhage (ICH) [2–4]. Specific features relevant to stroke assessment include hyperdense middle cerebral artery (MCA)/basilar signs, focal parenchymal hypoattenuation (notably of the insular ribbon or lenticular nuclei for MCA infarcts), and cerebral swelling manifested by sulcal or ventricular effacement or loss of cortical grey-white differentiation [5–7]. Decreases in CT attenuation accompanying early stroke are small; therefore, their conspicuity may be increased by using narrow window settings centered at approximately the mean attenuation in HUs of gray and white matter. We believe that the increase in lesion conspicuity achieved with this method can improve the accuracy of nonenhanced CT stroke detection [1]. In most academic stroke

References

[1]  M. H. Lev, J. Farkas, J. J. Gemmete et al., “Acute stroke: improved nonenhanced CT detection—benefits of soft-copy interpretation by using variable window width and center level settings,” Radiology, vol. 213, no. 1, pp. 150–155, 1999.
[2]  D. Tanne, S. E. Kasner, A. M. Demchuk et al., “Markers of increased risk of intracerebral hemorrhage after intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke in clinical practice: the multicenter rt-PA acute stroke survey,” Circulation, vol. 105, no. 14, pp. 1679–1685, 2002.
[3]  L. Derex and N. Nighoghossian, “Intracerebral haemorrhage after thrombolysis for acute ischaemic stroke: an update,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 10, pp. 1093–1099, 2008.
[4]  P. A. Barber, A. M. Demchuk, J. Zhang, and A. M. Buchan, “Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy,” The Lancet, vol. 355, no. 9216, pp. 1670–1674, 2000.
[5]  C. L. Truwit, A. J. Barkovich, A. Gean-Marton, N. Hibri, and D. Norman, “Loss of the insular ribbon: another early CT sign of acute middle cerebral artery infarction,” Radiology, vol. 176, no. 3, pp. 801–806, 1990.
[6]  N. Tomura, K. Uemura, A. Inugami, H. Fujita, S. Higano, and F. Shishido, “Early CT finding in cerebral infarction: obscuration of the lentiform nucleus,” Radiology, vol. 168, no. 2, pp. 463–467, 1988.
[7]  T. Moulin, F. Cattin, T. Crépin-Leblond et al., “Early CT signs in acute middle cerebral artery infarction: predictive value for subsequent infarct locations and outcome,” Neurology, vol. 47, no. 2, pp. 366–375, 1996.
[8]  H. P. Adams Jr., G. del Zoppo, M. J. Alberts, et al., “Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists,” Stroke, vol. 38, pp. 1655–1711, 2007.
[9]  W. Hacke, M. Kaste, C. Fieschi et al., “Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II),” The Lancet, vol. 352, no. 9136, pp. 1245–1251, 1998.
[10]  W. Hacke, M. Kaste, C. Fieschi et al., “Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke: the European Cooperative Acute Stroke Study (ECASS),” Journal of the American Medical Association, vol. 274, no. 13, pp. 1017–1025, 1995.
[11]  R. von Kummer, H. Bourquain, S. Bastianello et al., “Early prediction of irreversible brain damage after ischemic stroke at CT,” Radiology, vol. 219, no. 1, pp. 95–100, 2001.
[12]  R. von Kummer, “Early major ischemic changes on computed tomography should preclude use of tissue plasminogen activator,” Stroke, vol. 34, no. 3, pp. 820–821, 2003.
[13]  H. C. Schumacher, B. T. Bateman, B. Boden-Albala et al., “Use of thrombolysis in acute ischemic stroke: analysis of the Nationwide Inpatient Sample 1999 to 2004,” Annals of Emergency Medicine, vol. 50, no. 2, pp. 99–107, 2007.
[14]  J. M. Wardlaw, A. J. Farrall, D. Perry et al., “Factors influencing the detection of early CT signs of cerebral ischemia: an internet-based, international multiobserver study,” Stroke, vol. 38, no. 4, pp. 1250–1256, 2007.
[15]  W. K. Erly, B. C. Ashdown, R. W. Lucio II, R. F. Carmody, J. F. Seeger, and J. N. Alcala, “Evaluation of emergency CT scans of the head: is there a community standard?” American Journal of Roentgenology, vol. 180, no. 6, pp. 1727–1730, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133