Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy. 1. Definition and Synonyms Clinically, frontal lobe syndromes, frontal network syndromes, frontal systems syndromes, executive dysfunction, and metacognition have all been used to describe disorders of frontal lobes and their extended networks although they are not all synonymous. Anatomically they refer to those parts of the brain rostral to the central sulcus. However, because the frontal lobes network with every other part of the brain, strictly speaking, frontal network syndromes constitute the most accurate neurobiological depiction. The term, frontal network syndromes (FNS,) emphasizes the universal connectivity of the frontal lobes with all other brain regions. For example, the stroke literature is replete with FNS that have been reported with discreet lesions outside the anatomical boundary of the frontal lobe, such as subcortical grey matter, subcortical white matter, with isolated lesions of the brainstem, cerebellum, temporal, and parietal lobes [1–8]. For the purposes of simplification, five primary syndromes and numerous secondary syndromes may be delineated. Impairment in working memory, executive function, abulia, disinhibition, and emotional dyscontrol may be regarded as the elementary deficits of FNS. In addition, a number of secondary manifestations may be identified such as a wide array of behavioral abnormalities such as loss of social norms,
References
[1]
D. Karussis, R. R. Leker, and O. Abramsky, “Cognitive dysfunction following thalamic stroke: a study of 16 cases and review of the literature,” Journal of the Neurological Sciences, vol. 172, no. 1, pp. 25–29, 2000.
[2]
E. Kumral, D. Evyapan, and K. Balkir, “Acute caudate vascular lesions,” Stroke, vol. 30, no. 1, pp. 100–108, 1999.
[3]
M. Tullberg, E. Fletcher, C. DeCarli et al., “White matter lesions impair frontal lobe function regardless of their location,” Neurology, vol. 63, no. 2, pp. 246–253, 2004.
[4]
J. P. Neau, E. A. Anllo, V. Bonnaud, P. Ingrand, and R. Gil, “Neuropsychological disturbances in cerebellar infarcts,” Acta Neurologica Scandinavica, vol. 102, no. 6, pp. 363–370, 2000.
[5]
M. Hoffmann and F. Schmitt, “Cognitive impairment in isolated subtentorial stroke,” Acta Neurologica Scandinavica, vol. 109, no. 1, pp. 14–24, 2004.
[6]
J. Malm, B. Kristensen, T. Karlsson, B. Carlberg, M. Fagerlund, and T. Olsson, “Cognitive impairment in young adults with infratentorial infarcts,” Neurology, vol. 51, no. 2, pp. 433–440, 1998.
[7]
P. Garrard, D. Bradshaw, H. R. J?ger, A. J. Thompson, N. Losseff, and D. Playford, “Cognitive dysfunction after isolated brain stem insult. An underdiagnosed cause of long term morbidity,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 2, pp. 191–194, 2002.
[8]
E. Goldberg, The Executive Brain: Frontal Lobes and the Civilized Mind, Oxford University Press, London, UK, 2001.
[9]
T. W. Chow and J. L. Cummings, “Frontal subcortical circuits,” in The Human Frontal Lobes, B. Miller and J. L. Cummings, Eds., The Guilford Press, London, UK, 2nd edition, 2009.
[10]
D. G. Lichter and J. L. Cummings, Frontal Subcortical Circuits in Psychiatric and Neurological Disorders, The Guilford Press, New York, NY, USA, 2001.
[11]
T. Dobzhansky, “Nothing in biology makes sense except in the light of evolution,” American Biology Teacher, vol. 35, no. 3, pp. 125–129, 1973.
[12]
R. Dawkins, The Ancestor’s Tale. A Pilgrimage to the Dawn of Evolution, Houghton Mifflin, New York, NY, USA, 2004.
[13]
B. Zalc, D. Goujet, and D. R. Colman, “The origin of the myelination program in vertebrates,” Current Biology, vol. 18, no. 12, pp. R511–R512, 2008.
[14]
B. I. Roots, “The evolution of myelin,” Advances in Neural Science, vol. 1, pp. 187–213, 1993.
[15]
Y. Coppens, “East side story: the origin of humankind,” Scientific American, vol. 270, no. 5, pp. 88–95, 1994.
[16]
C. W. Marean, “When the sea saved humanity,” Scientific American, vol. 303, no. 2, pp. 55–61, 2010.
[17]
F. Delange, “The role of iodine in brain development,” Proceedings of the Nutrition Society, vol. 59, no. 1, pp. 75–79, 2000.
[18]
P. E. Wainwright, “Dietary essential fatty acids and brain function: a developmental perspective on mechanisms,” Proceedings of the Nutrition Society, vol. 61, no. 1, pp. 61–69, 2002.
[19]
B. J. Kelley, B. F. Boeve, and K. A. Josephs, “Young-onset dementia: demographic and etiologic characteristics of 235 patients,” Archives of Neurology, vol. 65, no. 11, pp. 1502–1508, 2008.
[20]
W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007.
[21]
J. M. Fuster, “Neuroimaging,” in The Prefrontal Cortex, J. M. Fuster, Ed., pp. 285–332, Elesevier, New York, NY, USA, 4th edition, 2009.
[22]
R. A. Prayson and J. R. Goldblum, Neuropathology, Elsevier, Amsterdam, The Netherlands, 2005.
[23]
H. Brunnstr?m, L. Gustafson, U. Passant, and E. Englund, “Prevalence of dementia subtypes: a 30-year retrospective survey of neuropathological reports,” Archives of Gerontology and Geriatrics, vol. 49, no. 1, pp. 146–149, 2009.
[24]
L. Mercy, J. R. Hodges, K. Dawson, R. A. Barker, and C. Brayne, “Incidence of early-onset dementias in Cambridgeshire, United Kingdom,” Neurology, vol. 71, no. 19, pp. 1496–1499, 2008.
[25]
K. A. Josephs, “Frontotemporal dementia and related disorders: deciphering the enigma,” Annals of Neurology, vol. 64, no. 1, pp. 4–14, 2008.
[26]
C. Junque, J. Pujol, P. Vendrell et al., “Leuko-araiosis on magnetic resonance imaging and speed of mental processing,” Archives of Neurology, vol. 47, no. 2, pp. 151–156, 1990.
[27]
C. C. Giza and D. A. Hovda, “The neurometabolic cascade of concussion,” Journal of Athletic Training, vol. 36, no. 3, pp. 228–235, 2001.
[28]
G. Barkhoudarian, D. A. Hovda, and C. C. Giza, “The molecular pathophysiology of concussive brain injury,” Clinics in Sports Medicine, vol. 30, no. 1, pp. 33–48, 2011.
[29]
S. Vernino, M. Geschwind, and B. Boeve, “Autoimmune encephalopathies,” Neurologist, vol. 13, no. 3, pp. 140–147, 2007.
[30]
A. McKeon, V. A. Lennon, and S. J. Pittock, “Immunotherapyresponsive dementias and encephalopathies,” Continuum Lifelong Learning in Neurology, vol. 16, no. 2, pp. 80–101, 2010.
[31]
K. Standley, C. Brock, and M. Hoffmann, “Advances in functional neuroimaging in dementia and potential pitfalls,” Neurology International, vol. 4, no. 1, article e7, 2012.
[32]
S. A. Small, S. A. Schobel, R. B. Buxton, M. R. Witter, and C. A. Barnes, “A pathophysiological framework of hippocampal dysfunction in ageing and disease,” Nature Reviews Neuroscience, vol. 12, no. 10, pp. 585–601, 2011.
[33]
J. R. Petrella, F. C. Sheldon, S. E. Prince, V. D. Calhoun, and P. M. Doraiswamy, “Default mode network connectivity in stable vs progressive mild cognitive impairment,” Neurology, vol. 76, no. 6, pp. 511–517, 2011.
[34]
L. Zeng, H. Shen, L. Liu et al., “Identifying major depression using whole brain functional connectivity a multivariate pattern analysis,” Brain, vol. 135, no. 5, pp. 1498–1507, 2012.
[35]
W. W. Seeley, V. Menon, A. F. Schatzberg et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349–2356, 2007.
[36]
S. C. Cramer, “Repairing the human brain after stroke. II. Restorative therapies,” Annals of Neurology, vol. 63, no. 5, pp. 549–560, 2008.
[37]
R. G. Klein, The Human Career: Human Biological and Cultural Origins, University of Chicago Press, Chicago, Ill, USA, 3rd edition, 2009.
[38]
R. L. Holloway, “Human brain evolution: a search for units, models and synthesis,” Canadian Journal of Anthropology, vol. 3, pp. 215–232, 1983.
[39]
K. Semendeferi, H. Damasio, R. Frank, and G. W. van Hoesen, “The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains,” Journal of Human Evolution, vol. 32, no. 4, pp. 375–388, 1997.
[40]
K. Semendeferi, A. Lu, N. Schenker, and H. Damasio, “Humans and great apes share a large frontal cortex,” Nature Neuroscience, vol. 5, no. 3, pp. 272–276, 2002.
[41]
R. L. Holloway, “The human brain evolving. A personal perspective,” in The Human Brain Evolving, D. Broadfield, M. Yuan, K. Schick, and N. Toth, Eds., Stone Age Publication, Stone Age Institute Press, Gosport, UK, 2010.
[42]
K. Semendeferi, E. Armstrong, A. Schleicher, K. Zilles, and G. W. van Hoesen, “Limbic frontal cortex in hominoids: a comparative study of area 13,” American Journal of Physical Anthropology, vol. 106, no. 2, pp. 129–155, 1998.
[43]
P. R. Hof, E. J. Mufson, and J. H. Morrison, “Human orbitofrontal cortex: cytoarchitecture and quantitative immunohistochemical parcellation,” Journal of Comparative Neurology, vol. 359, no. 1, pp. 48–68, 1995.
[44]
P. R. Hof and E. van der Gucht, “Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae),” Anatomical Record, vol. 290, no. 1, pp. 1–31, 2007.
[45]
K. Semendeferi, E. Armstrong, A. Schleicher, K. Zilles, and G. W. van Hoesen, “Prefrontal cortex in humans and apes: a comparative study of area 10,” American Journal of Physical Anthrorpology, vol. 114, no. 3, pp. 224–241, 2001.
[46]
N. M. Schenker, A. M. Desgouttes, and K. Semendeferi, “Neural connectivity and cortical substrates of cognition in hominoids,” Journal of Human Evolution, vol. 49, no. 5, pp. 547–569, 2005.
[47]
C. M. Schumann and D. G. Amaral, “Stereological estimation of the number of neurons in the human amygdaloid complex,” Journal of Comparative Neurology, vol. 491, no. 4, pp. 320–329, 2005.
[48]
R. A. Barton, J. P. Aggleton, and R. Grenyer, “Evolutionary coherence of the mammalian amygdala,” Proceedings of the Royal Society B, vol. 270, no. 1514, pp. 539–543, 2003.
[49]
L. Brothers, “The social brain: a project for integrationg primate behavior and neurophsyiology in a new domain,” Concepts in Neuroscience, vol. 1, pp. 27–51, 1990.
[50]
N. Barger, L. Stefanacci, and K. Semendeferi, “A comparative volumetric analysis of the amygdaloid complex and basolateral division in the human and ape brain,” American Journal of Physical Anthropology, vol. 134, no. 3, pp. 392–403, 2007.
[51]
F. H. Previc, “Dopamine and the origins of human intelligence,” Brain and Cognition, vol. 41, no. 3, pp. 299–350, 1999.
[52]
W. M. Bortz II, “Physical exercise as an evolutionary force,” Journal of Human Evolution, vol. 14, no. 2, pp. 145–155, 1985.
[53]
D. R. Carrier, “The energetic paradox of human running and hominid evolution,” Current Anthropology, vol. 25, no. 4, pp. 483–495, 1984.
[54]
W. R. Leonard and M. S. Robertson, “Comparative primate energetics and hominid evolution,” American Journal of Physical Anthropology, vol. 102, no. 2, pp. 265–281, 1997.
[55]
M. A. Raghanti, C. D. Stimpson, J. L. Marcinkiewicz, J. M. Erwin, P. R. Hof, and C. C. Sherwood, “Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study,” Neuroscience, vol. 155, no. 1, pp. 203–220, 2008.
[56]
B. Berger, P. Gaspar, and C. Verney, “Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates,” Trends in Neurosciences, vol. 14, no. 1, pp. 21–27, 1991.
[57]
D. A. Lewis, D. S. Melchitzky, S. R. Sesack, R. E. Whitehead, S. Auh, and A. Sampson, “Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization,” Journal of Comparative Neurology, vol. 432, no. 1, pp. 119–136, 2001.
[58]
R. L. Jakab and P. S. Goldman Rakic, “Segregation of serotonin 5HT 2A and 5HT 3 receptors in inhibitory circuits in the primate cerebral cortex,” The Journal of Comparative Neurology, vol. 417, no. 3, pp. 337–348, 2000.
[59]
P. Soubrié, “Reconciling the role of central serotonin neurons in human and animal behavior,” Behavioral and Brain Sciences, vol. 9, no. 2, pp. 319–364, 1986.
[60]
M. Sarter and V. Parikh, “Choline transporters, cholinergic transmission and cognition,” Nature Reviews Neuroscience, vol. 6, no. 1, pp. 48–56, 2005.
[61]
E. D. Levin and B. B. Simon, “Nicotinic acetylcholine involvement in cogitive function in animals,” Psychopharmacology, vol. 138, no. 3-4, pp. 217–230, 1998.
[62]
F. Subiaul, “Mosaic cognitive evolution: the case of imitation behavior,” in The Human Brain Evolving, D. Broadfield, M. Yuan, K. Schick, and N. Toth, Eds., Stone Age Publication, Stone Age Institute Press, Gosport, UK, 2010.
[63]
S. T. Brady, G. J. Siegel, R. W. Albers, and D. L. Price, Eds., Basic Neurochemistry: Principles of Molecular, Cellular and Medical Neurobiology, Academic Press, Amsterdam, The Netherlands, 8th edition, 2012.
[64]
E. J. Nestler, S. E. Hyman, and Malenka, Molecular Neuropharmacology: A Foundation for Clinical Neurocience, McGraw Hill, New York, NY, USA, 2009.
[65]
D. G. Lichter and J. L. Cummings, “Introduction and overview,” in Frontal—Subcortical Circuits in Psychiatric and Neurological Disorders, D. G. Lichter and J. L. Cummings, Eds., The Guilford Press, New York, NY, USA, 2001.
[66]
J. L. Cummings, “Frontal-subcortical circuits and human behavior,” Archives of Neurology, vol. 50, no. 8, pp. 873–880, 1993.
[67]
M. Catani, D. K. Jones, and D. H. Ffytche, “Perisylvian language networks of the human brain,” Annals of Neurology, vol. 57, no. 1, pp. 8–16, 2005.
[68]
N. Mallet, B. R. Micklem, P. Henny et al., “Dichotomous organization of the external globus pallidus,” Neuron, vol. 74, no. 6, pp. 1075–1086, 2012.
[69]
E. H. Yeterian and D. N. Pandya, “Striatal connections of the parietal association cortices in rhesus monkeys,” Journal of Comparative Neurology, vol. 332, no. 2, pp. 175–197, 1993.
[70]
D. T. Stuss, D. Floden, M. P. Alexander, B. Levine, and D. Katz, “Stroop performance in focal lesion patients: dissociation of processes and frontal lobe lesion location,” Neuropsychologia, vol. 39, no. 8, pp. 771–786, 2001.
[71]
J. T. Fesenmeier, R. Kuzniecky, and J. H. Garcia, “Akinetic mutism caused by bilateral anterior cerebral tuberculous obliterative arteritis,” Neurology, vol. 40, no. 6, pp. 1005–1006, 1990.
[72]
J. Bogousslavsky and F. Regli, “Anterior cerebral artery territory infarction in the Lausanne stroke registry,” Archives of Neurology, vol. 47, no. 2, pp. 144–150, 1990.
[73]
M. L. Berthier, J. Kulisevsky, A. Gironell, and J. A. Heras, “Obsessive-compulsive disorder associated with brain lesions: clinical phenomenology, cognitive function, and anatomic correlates,” Neurology, vol. 47, no. 2, pp. 353–361, 1996.
[74]
M. L. Berthier, S. E. Starkstein, R. G. Robinson, and R. Leiguarda, “Limbic lesions in a patient with recurrent mania,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 2, no. 2, pp. 235–236, 1990.
[75]
D. T. Stuss, “New approaches to prefrontal lobe testing,” in The Human Frontal Lobes, B. Miller and J. L. Cummings, Eds., The Guilford Press, New York, NY, USA, 2009.
[76]
D. T. Stuss, M. A. Binns, K. J. Murphy, and M. P. Alexander, “Dissociations within the anterior attentional system: effects of task complexity and irrelevant information on reaction time speed and accuracy,” Neuropsychology, vol. 16, no. 4, pp. 500–513, 2002.
[77]
D. T. Stuss, A. Guberman, R. Nelson, and S. Larochelle, “The neuropsychology of paramedian thalamic infarction,” Brain and Cognition, vol. 8, no. 3, pp. 348–378, 1988.
[78]
K. D. Cicerone, “Attention deficits and dual task demands after mild traumatic brain injury,” Brain Injury, vol. 10, no. 2, pp. 79–89, 1996.
[79]
J. Aharon-Peretz and R. Tomer, “Traumatic brain injury,” in The Human Frontal Lobes, B. Miller and J. L. Cummings, Eds., The Guilford Press, New York, NY, USA, 2009.
[80]
R. Bar-On, D. Tranel, N. L. Denburg, and A. Bechara, “Exploring the neurological substrate of emotional and social intelligence,” Brain, vol. 126, no. 8, pp. 1790–1800, 2003.
[81]
S. G. Shamay-Tsoory, R. Tomer, D. Goldsher, B. D. Berger, and J. Aharon-Peretz, “Impairment in cognitive and affective empathy in patients with brain lesions: anatomical and cognitive correlates,” Journal of Clinical and Experimental Neuropsychology, vol. 26, no. 8, pp. 1113–1127, 2004.
[82]
L. Pessoa, “On the relationship between emotion and cognition,” Nature Reviews Neuroscience, vol. 9, no. 2, pp. 148–158, 2008.
[83]
M. Hoffmann, L. Benes Cases, B. Hoffmann, and R. Chen, “The impact of stroke on emotional intelligence,” BMC Neurology, vol. 10, article 103, 2010.
[84]
N. Kapur, “Paradoxical functional facilitation in brain-behaviour research: a critical review,” Brain, vol. 119, no. 5, pp. 1775–1790, 1996.
[85]
G. D. Schott, “Pictures as a neurological tool: lessons from enhanced and emergent artistry in brain disease,” Brain, vol. 135, no. 6, pp. 1947–1963, 2012.
[86]
G. N. Christodoulou, M. Margariti, V. P. Kontaxakis, and N. G. Christodoulou, “The delusional misidentification syndromes: strange, fascinating, and instructive,” Current Psychiatry Reports, vol. 11, no. 3, pp. 185–189, 2009.
[87]
M. D. Pell, “Judging emotion and attitudes from prosody following brain damage,” Progress in Brain Research, vol. 156, pp. 303–317, 2006.
[88]
J. Pe?a-Casanova, T. Roig-Rovira, A. Bermudez, and E. Tolosa-Sarro, “Optic aphasia, optic apraxia, and loss of dreaming,” Brain and Language, vol. 26, no. 1, pp. 63–71, 1985.
[89]
D. A. Treffert, Islands of Genius, Jessica Kingsley Publishers, London, UK, 2010.
[90]
“Assessment: neuropsychological testing of adults. Considerations for neurologists,” Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology, 1996.
[91]
J. H. Kramer, B. R. Reed, D. Mungas, M. W. Weiner, and H. C. Chui, “Executive dysfunction in subcortical ischaemic vascular disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 2, pp. 217–220, 2002.
[92]
N. D. Prins, E. J. van Dijk, T. den Heijer et al., “Cerebral small-vessel disease and decline in information processing speed, executive function and memory,” Brain, vol. 128, no. 9, pp. 2034–2041, 2005.
[93]
Z. S. Nasreddine, N. A. Phillips, V. Bédirian et al., “The montreal cognitive assessment, MoCA: s brief screening tool for mild cognitive impairment,” Journal of the American Geriatrics Society, vol. 53, no. 4, pp. 695–699, 2005.
[94]
B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, “The FAB: a frontal assessment battery at bedside,” Neurology, vol. 55, no. 11, pp. 1621–1626, 2000.
[95]
D. R. Royall, R. K. Mahurin, and K. F. Gray, “Bedside assessment of executive cognitive impairment: the executive interview,” Journal of the American Geriatrics Society, vol. 40, no. 12, pp. 1221–1226, 1992.
[96]
M. Hoffmann, F. Schmitt, and E. Bromley, “Comprehensive cognitive neurological assessment in stroke,” Acta Neurologica Scandinavica, vol. 119, no. 3, pp. 162–171, 2009.
[97]
M. Hoffmann and F. Schmitt, “Metacognition in stroke: bedside assessment and relation to location, size, and stroke severity,” Cognitive and Behavioral Neurology, vol. 19, no. 2, pp. 85–94, 2006.
[98]
T. Dwolatzky, V. Whitehead, G. M. Doniger et al., “Validity of a novel computerized cognitive battery for mild cognitive impairment,” BMC Geriatrics, vol. 3, article 1, 2003.
[99]
T. W. Robbins, M. James, A. M. Owen, B. J. Sahakian, L. McInnes, and P. Rabbitt, “Cambridge neuropsychological test automated battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers,” Dementia, vol. 5, no. 5, pp. 266–281, 1994.
[100]
R. J. Kiernan, J. Mueller, J. W. Langston, and C. van Dyke, “The neurobehavioral cognitive status examination: a brief but differentiated approach to cognitive assessment,” Annals of Internal Medicine, vol. 107, no. 4, pp. 481–485, 1987.
[101]
C. T. Gualtieri and L. G. Johnson, “Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs,” Archives of Clinical Neuropsychology, vol. 21, no. 7, pp. 623–643, 2006.
[102]
D. C. Delis, E. Kaplan, and J. H. Kramer, DKEFS, Psychological Corporation, a Harcourt Assessment Company, 2001.
[103]
D. Wechsler, Wechsler Adult Intelligence Scale, The Psychological Corporation, Harcourt Brace and Company, San Antonio, Tex, USA, 4th edition, 2008.
[104]
J. Grace and P. F. Malloy, Frontal Systems Behavior Scale, PAR Neuropsychological Assessment Resources, Lutz, Fla, USA, 2001.
[105]
R. M. Roth, P. K. Isquith, and G. A. Gioia, BRIEF-A: Behavior Rating Inventory of Executive Funtion-Adult Version, PAR Neuropsychological Assessment Resources, Lutz, Fla, USA, 2005.
[106]
A. Kertesz, W. Davidson, and H. Fox, “Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia,” Canadian Journal of Neurological Sciences, vol. 24, no. 1, pp. 29–36, 1997.
[107]
C. R. Reynolds, Comprehensive Trail Making Test, Pro-Ed, Austin, Tex, USA, 2002.
[108]
J. A. Gladsjo, W. Walden Miller, and R. K. Heaton, Norms for Letter and Category Fluency: Demographic Corrections for Age, Education and Ethnicity, Psychological Assessment Resources, Lutz, Fla, USA, 1999.
[109]
R. K. Heaton, Wisconsin Card Sorting Test Computer Version 4, PAR Psychological Assessment Resources, Lutz, Fla, USA, 2003.
[110]
W. C. Culbertson and E. A. Zillmer, Tower of London, Multi Health Systems, Toronto, Canada, 2001.
[111]
R. Bar-On, The Bar-On EmotIonal QuotIent Inventory (EQ-I): TechnIcal Manual, Multi Health Systems, Toronto, Canada, 1997.
[112]
MSCEIT, Mayer, Salovey, & Caruso, Multi Health Systems, Toronto, Canada, 2002.
[113]
M. R. Trenerry, B. Crosson, J. DeBoe, and W. R. Leber, Stroop Neuropsychological Screening Test, Psychological Assessment Resources (PAR), Lutz, Fla, USA, 1989.
[114]
A. Bechara, Iowa Gambling Test, Psychological Assessment Resources, Lutz, Fla, USA, 2007.
[115]
M. Rutter, A. Le Couteur, and C. Lord, ADI-R, Western Psychological Services, Los Angeles, Calif, USA, 2005.
[116]
S. Baron-Cohen, S. Wheelwright, R. Skinner, J. Martin, and E. Clubley, “The autism-spectrum quotient (AQ): evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians,” Journal of Autism and Developmental Disorders, vol. 31, no. 1, pp. 5–17, 2001.
[117]
T. E. Brown, Brown Attention Deficit Disorder Scales, The Psychological Corporation, A Harcourt Assessment Company, Hamden, Conn, USA, 1996.
[118]
L. Radloff, “The CES-D scale: a self report depression scale for research in the general population,” Applied Psychological Measurement, vol. 1, no. 3, pp. 385–401, 1977.
[119]
A. T. Beck, R. A. Steer, and G. K. Brown, Beck Depression Inventory II, Psychological Corporation, San Antonio, Tex, USA, 1996.
[120]
W. M. Reynolds and K. A. Kobak, Hamilton Depression Inventory, Psychological Assessment Resources, Lutz, Fla, USA, 1995.
[121]
V. E. Stone, S. Baron-Cohen, and R. T. Knight, “Frontal lobe contributions to theory of mind,” Journal of Cognitive Neuroscience, vol. 10, no. 5, pp. 640–656, 1998.
[122]
S. Baron-Cohen, T. Jolliffe, C. Mortimore, and M. Robertson, “Another advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger syndrome,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 38, no. 7, pp. 813–822, 1997.
[123]
T. Manly, K. Hawkins, J. Evans, K. Woldt, and I. H. Robertson, “Rehabilitation of executive function: facilitation of effective goal management on complex tasks using periodic auditory alerts,” Neuropsychologia, vol. 40, no. 3, pp. 271–281, 2002.
[124]
C. Knight, N. Alderman, and P. W. Burgess, “Development of a simplified version of the multiple errrands test for use in hospital settings,” Neuropsychological Rehabilitation, vol. 12, no. 3, pp. 231–255, 2002.
[125]
S. Windmann, M. Wehrmann, P. Calabrese, and O. Güntürkün, “Role of the prefrontal cortex in attentional control over bistable vision,” Journal of Cognitive Neuroscience, vol. 18, no. 3, pp. 456–471, 2006.
[126]
E. P. Torrance, “Influence of dyadic interaction on creative functioning,” Psychological Reports, vol. 26, no. 2, pp. 391–394, 1970.
[127]
M. R. Trenerry, B. Cross, J. de Boe, and W. R. Leber, Visual Search and Attention Test (VSAT), Psychological Assessment Resources, Lutz, Fla, USA, 1990.
[128]
J. H. Bernstein and D. P. Waber, Developmental Scoring System for the Rey Osterrieth Complex Figure, Psychological Assessment Resources, Lutz, Fla, USA, 1996.
[129]
E. Goldberg, K. Podelle, R. Bilder, and J. Jaeger, The Executive Control Battery, Psych Press, Melbourne, Australia, 1999.
[130]
A. Kertesz, The Western Aphasia Battery, The Psychological Corporation, Harcourt Brace Jovanovich, 1982.
[131]
H. Goodglass, E. Kaplan, and B. Barresi, Boston Diagnostic Aphasia Test, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 3rd edition, 2001.
[132]
R. Doty, Sensonics, Haddon Heights,NJ, USA, 2006.
[133]
M. M. Mesulam, “Large-scale neurocognitive networks and distributed processing for attention, language, and memory,” Annals of Neurology, vol. 28, no. 5, pp. 597–613, 1990.
[134]
E. Goldberg, The Executive Brain: Frontal Lobes and the Civilized Mind, Oxford University Press, London, UK, 2001.
[135]
B. Winter, B. Bert, H. Fink, U. Dirnagl, and M. Endres, “Dysexecutive syndrome after mild cerebral ischemia? Mice learn normally but have deficits in strategy switching,” Stroke, vol. 35, no. 1, pp. 191–195, 2004.
[136]
P. K. Gillman, “A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action,” Biological Psychiatry, vol. 59, no. 11, pp. 1046–1051, 2006.
[137]
N. Gnanadesignan, R. T. Espinoza, and R. L. Smith, “The serotonin syndrome,” The New England Journal of Medicine, vol. 352, no. 11, pp. 2454–2456, 2005.
[138]
I. M. Whyte, Serotonin Toxicity/Syndrome: Medical Toxicology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2004.
[139]
J. R. Strawn, P. E. Keck, and S. N. Caroff, “Neuroleptic malignant syndrome,” American Journal of Psychiatry, vol. 164, no. 6, pp. 870–876, 2007.
[140]
R. S. Litman and H. Rosenberg, “Malignant hyperthermia: update on susceptibility testing,” The Journal of the American Medical Association, vol. 293, no. 23, pp. 2918–2924, 2005.
[141]
K. L. Ochs, M. Zell-Kanter, M. B. Mycyk, and Toxikon Consortium, “Hot, blind and mad: avoidable geriatric anticholinergic delirium,” The American Journal of Emergency Medicine, vol. 30, no. 3, pp. 514.e1–514.e3, 2012.
[142]
J. A. Blackman, P. D. Patrick, M. L. Buck, and R. S. Rust, “Paroxysmal autonomic instability with dystonia after brain injury,” Archives of Neurology, vol. 61, no. 3, pp. 321–328, 2004.
[143]
J. K. Johnson, J. Diehl, M. F. Mendez et al., “Frontotemporal lobar degeneration: demographic characteristics of 353 patients,” Archives of Neurology, vol. 62, no. 6, pp. 925–930, 2005.
[144]
S. M. Rosso, L. D. Kaat, T. Baks et al., “Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study,” Brain, vol. 126, no. 9, pp. 2016–2022, 2003.
[145]
B. L. Miller, J. L. Cummings, J. Villanueva-Meyer et al., “Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics,” Neurology, vol. 41, no. 9, pp. 1374–1382, 1991.
[146]
D. Neary, J. S. Snowden, L. Gustafson et al., “Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria,” Neurology, vol. 51, no. 6, pp. 1546–1554, 1998.
[147]
K. Rascovsky, J. R. Hodges, D. Knopman, M. F. Mendez, J. H. Kramer, et al., “Sensitivity of revised diagnostic criteria for the behavioral variant of frontotemproal dementia,” Brain, vol. 134, no. 9, pp. 2456–2477, 2011.
[148]
C. P. Coste, S. Sadaghiani, K. J. Friston, and A. Kleinschmidt, “Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance,” Cerebral Cortex, vol. 21, no. 11, pp. 2612–2619, 2011.
[149]
K. J. Hatanpaa, D. M. Blass, O. Pletnikova et al., “Most cases of dementia with hippocampal sclerosis may represent frontotemporal dementia,” Neurology, vol. 63, no. 3, pp. 538–542, 2004.
[150]
M. Neumann, M. Tolnay, and I. R. Mackenzie, “The molecular basis of frontotemporal dementia,” Expert Reviews in Molecular Medicine, vol. 11, article e23, 2009.
[151]
W. W. Seeley, “Selective functional, regional, and neuronal vulnerability in frontotemporal dementia,” Current Opinion in Neurology, vol. 21, no. 6, pp. 701–707, 2008.
[152]
C. Lomen-Hoerth, “Characterization of amyotrophic lateral sclerosis and frontotemporal dementia,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 4, pp. 337–341, 2004.
[153]
P. Foulds, E. McAuley, L. Gibbons et al., “TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer's disease and frontotemporal lobar degeneration,” Acta Neuropathologica, vol. 116, no. 2, pp. 141–146, 2008.
[154]
T. Arai, I. R. A. Mackenzie, M. Hasegawa et al., “Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies,” Acta Neuropathologica, vol. 117, no. 2, pp. 125–136, 2009.
[155]
M. G. Spillantini, H. Yoshida, C. Rizzini, et al., “A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies,” Annals of Neurology, vol. 48, no. 6, pp. 939–943, 2000.
[156]
E. J. Kim, M. Sidhu, S. E. Gaus et al., “Selective fronto insular von Economo neuron and fork cell loss in early behavioral variant of frontotemporal dementia,” Cerebral Cortex, vol. 22, no. 2, pp. 251–259, 2012.
[157]
J. D. Rohrer, R. Guerreiro, J. Vandrovcova et al., “The heritability and genetics of frontotemporal lobar degeneration,” Neurology, vol. 73, no. 18, pp. 1451–1456, 2009.
[158]
W. T. Hu, Z. Wang, V. M. Y. Lee, J. Q. Trojanowski, J. A. Detre, and M. Grossman, “Distinct cerebral perfusion patterns in FTLD and AD,” Neurology, vol. 75, no. 10, pp. 881–888, 2010.
[159]
H. Bian, J. C. van Swieten, S. Leight et al., “CSF biomarkers in frontotemporal lobar degeneration with known pathology,” Neurology, vol. 70, no. 19, pp. 1827–1835, 2008.
[160]
E. D. Huey, K. T. Putnam, and J. Grafman, “A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia,” Neurology, vol. 66, no. 1, pp. 17–22, 2006.
[161]
G. G. Yener, H. J. Rosen, and J. Papatriantafyllou, “Frontotemporal degeneration,” Continuum Lifelong Learning in Neurology, vol. 16, no. 2, pp. 191–211, 2010.
[162]
D. Mungas, W. J. Jagust, B. R. Reed et al., “MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease,” Neurology, vol. 57, no. 12, pp. 2229–2235, 2001.
[163]
J. C. L. Looi and P. S. Sachdev, “Differentiation of vascular dementia from AD on neuropsychological tests,” Neurology, vol. 53, no. 4, pp. 670–678, 1999.
[164]
G. Gold, P. Giannakopoulos, C. Montes-Paixao Jr. et al., “Sensitivity and specificity of newly proposed clinical criteria for possible vascular dementia,” Neurology, vol. 49, no. 3, pp. 690–694, 1997.
[165]
J. L. Ingles, C. Wentzel, J. D. Fisk, and K. Rockwood, “Neuropsychological predictors of incident dementia in patients with vascular cognitive impairment, without dementia,” Stroke, vol. 33, no. 8, pp. 1999–2002, 2002.
[166]
A. R. Varma, R. Laitt, J. J. Lloyd et al., “Diagnostic value of high signal abnormalities on T2 weighted MRI in the differentiation of Alzheimer's, frontotemporal and vascular dementias,” Acta Neurologica Scandinavica, vol. 105, no. 5, pp. 355–364, 2002.
[167]
D. J. Libon, C. C. Price, T. Giovannetti et al., “Linking MRI hyperintensities with patterns of neuropsychological impairment: evidence for a threshold effect,” Stroke, vol. 39, no. 3, pp. 806–813, 2008.
[168]
J. J. Hauw, “The neuropathology of vascular and mixed dementia and vascular cognitive impairment,” in Handbook of Clinical Neurology Dementias, M. J. Aminoff, F. Boller, and D. F. Swaab, Eds., vol. 89, series 3, Elsevier, New York, NY, USA, 2008.
[169]
L. Delano-Wood, N. Abeles, J. M. Sacco, C. E. Wierenga, N. R. Horne, and A. Bozoki, “Regional white matter pathology in mild cognitive impairment: differential influence of lesion type on neuropsychological functioning,” Stroke, vol. 39, no. 3, pp. 794–799, 2008.
[170]
H. Yatsuya, A. R. Folsom, T. Y. Wong, R. Klein, B. E. K. Klein, and A. R. Sharrett, “Retinal microvascular abnormalities and risk of lacunar stroke: atherosclerosis risk in communities study,” Stroke, vol. 41, no. 7, pp. 1349–1355, 2010.
[171]
A. Viswanathan, W. A. Rocca, and C. Tzourio, “The Vascular—dementiacontinuum,” Neurology, vol. 72, no. 4, pp. 368–374, 2009.
[172]
Y. Deschaintre, F. Richard, D. Leys, and F. Pasquier, “Treatment of vascular risk factors is associated with slower decline in Alzheimer disease,” Neurology, vol. 73, no. 9, pp. 674–680, 2009.
[173]
J. T. Becker, F. J. Huff, R. D. Nebes, A. Holland, and F. Boller, “Neuropsychological function in Alzheimer's disease. Pattern of impairment and rates of progression,” Archives of Neurology, vol. 45, no. 3, pp. 263–268, 1988.
[174]
R. D. Nebes and B. Brady, “Focused and divided attention in Alzheimer's disease,” Cortex, vol. 25, no. 2, pp. 305–315, 1989.
[175]
A. Baddeley, S. Della Sala, and H. Spinnler, “The two-component hypothesis of memory deficit in Alzheimer's disease,” Journal of Clinical and Experimental Neuropsychology, vol. 13, no. 2, pp. 372–380, 1991.
[176]
F. Collette, M. van der Linden, G. Delrue, and E. Salmon, “Frontal hypometabolism does not explain inhibitory dysfunction in Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 16, no. 4, pp. 228–238, 2002.
[177]
N. D. Chiaravalloti and J. DeLuca, “Cognitive impairment in multiple sclerosis,” The Lancet Neurology, vol. 7, no. 12, pp. 1139–1151, 2008.
[178]
M. Roca, T. Torralva, F. Meli et al., “Cognitive deficits in multiple sclerosis correlate with changes in fronto-subcortical tracts,” Multiple Sclerosis, vol. 14, no. 3, pp. 364–369, 2008.
[179]
T. K. Len and J. P. Neary, “Cerebrovascular pathophysiology following mild traumatic brain injury,” Clinical Physiology and Functional Imaging, vol. 31, no. 2, pp. 85–93, 2011.
[180]
B. Johnson, K. Zhang, M. Gay et al., “Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study,” Neuroimage, vol. 59, no. 1, pp. 511–518, 2012.
[181]
S. Skuja, V. Groma, and L. Smane, “Alocholism and cellular variability in different brain regions,” Ultrastructural Pathology, vol. 36, no. 1, pp. 40–47, 2012.
[182]
J. Sabeti, “Ethanol exposure in early adolescence inhibits intrinsic neuronal plasticity via sigma 1 receptor activation in hippocampal CA1 neurons,” Alcoholism: Clinical and Experimental Research, vol. 35, no. 5, pp. 885–904, 2011.
[183]
H. Kazui, “Cognitive impairment in patients with idiopathic normal pressure hydrocephalus,” Brain and Nerve, vol. 60, no. 3, pp. 225–231, 2008.
[184]
E. Gleichgerrcht, A. Cervio, J. Salvat et al., “Executive function improvement in normal pressure hydrocephalus following shunt surgery,” Behavioural Neurology, vol. 21, no. 3-4, pp. 181–185, 2009.
[185]
A. Tarnaris, N. D. Kitchen, and L. D. Watkins, “Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging—a review,” Journal of Neurosurgery, vol. 110, no. 5, pp. 837–851, 2009.
[186]
F. Graus, A. Saiz, M. Lai et al., “Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations,” Neurology, vol. 71, no. 12, pp. 930–936, 2008.
[187]
E. Flanagan, A. McKeon, V. Lennon, et al., “Immunotherapy responsive dementia or encephalopathy: clinical course and predictors of improvements,” Annals of Neurology, vol. 66, article S41, 2009.
[188]
H. Rafael, “Secondary Alzheimer started by cryptococcal meningitis (multiple letters),” Journal of Alzheimer's Disease, vol. 7, no. 2, pp. 99–100, 2005.
[189]
T. A. Ala, R. C. Doss, and C. J. Sullivan, “Reversible dementia: a case of cryptococcal meningitis masquerading as Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 6, no. 5, pp. 503–508, 2004.
[190]
M. Hoffmann, J. Muniz, E. Carroll, and J. de Villasante, “Cryptococcal meningitis misdiagnosed as alzheimer's disease: complete neurological and cognitive recovery with treatment,” Journal of Alzheimer's Disease, vol. 16, no. 3, pp. 517–520, 2009.
[191]
C. Salvarani, R. D. Brown, K. T. Calamia et al., “Primary central nervous system vasculitis: analysis of 101 patients,” Annals of Neurology, vol. 62, no. 5, pp. 442–451, 2007.
[192]
R. A. Hajj-Ali, A. B. Singhal, S. Benseler, E. Molloy, and L. H. Calabrese, “Primary angiitis of the CNS,” The Lancet Neurology, vol. 10, no. 6, pp. 561–572, 2011.
[193]
P. M. Moore and L. H. Calabrese, “Neurologic manifestations of systemic vasculitides,” Seminars in Neurology, vol. 14, no. 4, pp. 300–306, 1994.
[194]
N. L. Foster, J. L. Heidebrink, C. M. Clark et al., “FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer's disease,” Brain, vol. 130, no. 10, pp. 2616–2635, 2007.
[195]
V. Berti, A. Pupi, and L. Mosconi, “PET/CT in diagnosis of dementia,” Annals of the New York Academy of Sciences, vol. 1228, no. 1, pp. 81–92, 2011.
[196]
R. Migliaccio, F. Agosta, K. Rascovsky et al., “Clinical syndromes associated with posterior atrophy: early age at onset AD spectrum,” Neurology, vol. 73, no. 19, pp. 1571–1578, 2009.
[197]
Y. Stern, “Cognitive reserve and Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 20, no. 2, pp. 112–117, 2006.
[198]
M. E. Robinson, J. G. Craggs, D. D. Price, W. M. Perlstein, and R. Staud, “Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome,” Journal of Pain, vol. 12, no. 4, pp. 436–443, 2011.
[199]
M. Obermann, K. Nebel, C. Schumann et al., “Gray matter changes related to chronic posttraumatic headache,” Neurology, vol. 73, no. 12, pp. 978–983, 2009.
[200]
P. Y. Geha, M. N. Baliki, R. N. Harden, W. R. Bauer, T. B. Parrish, and A. V. Apkarian, “The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions,” Neuron, vol. 60, no. 4, pp. 570–581, 2008.
[201]
A. V. Apkarian, Y. Sosa, S. Sonty et al., “Chronic back pain is associated with decreased prefrontal and thalamic gray matter density,” Journal of Neuroscience, vol. 24, no. 46, pp. 10410–10415, 2004.
[202]
P. Rainville, G. H. Duncan, D. D. Price, B. Carrier, and M. C. Bushnell, “Pain affect encoded in human anterior cingulate but not somatosensory cortex,” Science, vol. 277, no. 5328, pp. 968–971, 1997.
[203]
R. C. Coghill, C. N. Sang, J. M. Maisog, and M. J. Iadarola, “Pain intensity processing within the human brain: a bilateral, distributed mechanism,” Journal of Neurophysiology, vol. 82, no. 4, pp. 1934–1943, 1999.
[204]
K. L. Casey, “Concepts of pain mechanisms the contribution of functional imaging of the human brain,” Progress in Brain Research, vol. 129, pp. 277–287, 2000.
[205]
C. L. Kwan, A. P. Crawley, D. J. Mikulis, and K. D. Davis, “An fMRI study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli,” Pain, vol. 85, no. 3, pp. 359–374, 2000.
[206]
N. Sawamoto, M. Honda, T. Okada et al., “Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study,” Journal of Neuroscience, vol. 20, no. 19, pp. 7438–7445, 2000.
[207]
F. A. Nielsen, D. Balslev, and L. K. Hansen, “Mining the posterior cingulate: segregation between memory and pain components,” NeuroImage, vol. 27, no. 3, pp. 520–532, 2005.
[208]
W. T. Hu, Z. Wang, V. M. Y. Lee, J. Q. Trojanowski, J. A. Detre, and M. Grossman, “Distinct cerebral perfusion patterns in FTLD and AD,” Neurology, vol. 75, no. 10, pp. 881–888, 2010.
[209]
A. Kadir, T. Darreh-Shori, O. Almkvist, A. Wall, B. L?ngstr?m, and A. Nordberg, “Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer's disease following rivastigmine treatment as assessed by PET,” Psychopharmacology, vol. 191, no. 4, pp. 1005–1014, 2007.
[210]
R. Hilker, A. V. Thomas, J. C. Klein et al., “Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways,” Neurology, vol. 65, no. 11, pp. 1716–1722, 2005.
[211]
S. S. Shin, T. Verstynen, S. Pathak et al., “High definition fiber tracking for assessment of neurological deficit of traumatic brain injury finding, visualizing and interpreting small sites of damage,” Journal of Neurosurgery, vol. 116, no. 5, pp. 1062–1069, 2012.
[212]
S. Mesaros, M. A. Rocca, K. Kacar et al., “Diffusion tensor MRI tractography and cognitive impairment in multiple sclerosis,” Neurology, vol. 78, no. 13, pp. 969–975, 2012.
[213]
M. Sarter, M. E. Hasselmo, J. P. Bruno, and B. Givens, “Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection,” Brain Research Reviews, vol. 48, no. 1, pp. 98–111, 2005.
[214]
S. J. Sara and A. Hervé-Minvielle, “Inhibitory influence of frontal cortex on locus coeruleus neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 6032–6036, 1995.
[215]
J. Amat, M. V. Baratta, E. Paul, S. T. Bland, L. R. Watkins, and S. F. Maier, “Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus,” Nature Neuroscience, vol. 8, no. 3, pp. 365–371, 2005.
[216]
S. C. Cramer, “Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery,” Annals of Neurology, vol. 63, no. 3, pp. 272–287, 2008.
[217]
T. W. Robbins TW and A. F. T. Arnsten, “The neuropsychopharmacology of fronto-executive function: monoaminergic modulation,” Annual Review of Neuroscience, vol. 32, pp. 267–287, 2009.
[218]
R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus to rapidity of habit formation,” Journal of Comparative Neurology and Psychology, vol. 18, no. 5, pp. 459–482, 1908.
[219]
A. F. T. Arnsten, “Through the looking glass: differential noradenergic modulation of prefrontal cortical function,” Neural Plasticity, vol. 7, no. 1-2, pp. 133–146, 2000.
[220]
S. B. Floresco, O. Magyar, S. Ghods-Sharifi, C. Vexelman, and M. T. L. Tse, “Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting,” Neuropsychopharmacology, vol. 31, no. 2, pp. 297–309, 2006.
[221]
S. B. Floresco and O. Magyar, “Mesocortical dopamine modulation of executive functions: beyond working memory,” Psychopharmacology, vol. 188, no. 4, pp. 567–585, 2006.
[222]
B. M. Li and Z. T. Mei, “Delayed-response deficit induced by local injection of the α2-adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys,” Behavioral and Neural Biology, vol. 62, no. 2, pp. 134–139, 1994.
[223]
M. Wang, B. P. Ramos, C. D. Paspalas et al., “α2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex,” Cell, vol. 129, no. 2, pp. 397–410, 2007.
[224]
J. K. Seamans and T. W. Robbins, “Dopamine modulation of the prefrontal cortex and cognition function,” in Dopamine Receptors, K. Neve, Ed., Humana Press, Totowa, NJ, USA, 2009.
[225]
J. K. Seamans, D. Durstewitz, B. R. Christie, C. F. Stevens, and T. J. Sejnowski, “Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 1, pp. 301–306, 2001.
[226]
G. Aston-Jones and J. D. Cohen, “An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance,” Annual Review of Neuroscience, vol. 28, pp. 403–450, 2005.
[227]
K. J. Millar, S. Mackie, S. J. Clapcote et al., “Disrupted in schizophrenia 1 and phosphodiesterase 4B: towards an understanding of psychiatric illness,” Journal of Physiology, vol. 584, no. 2, pp. 401–405, 2007.
[228]
K. Mirnics, F. A. Middleton, G. D. Stanwood, D. A. Lewis, and P. Levitt, “Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia,” Molecular Psychiatry, vol. 6, no. 3, pp. 293–301, 2001.
[229]
A. E. Baum, N. Akula, M. Cabanero et al., “A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder,” Molecular Psychiatry, vol. 13, no. 2, pp. 197–207, 2008.
[230]
H. K. Manji and R. H. Lenox, “Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness,” Biological Psychiatry, vol. 46, no. 10, pp. 1328–1351, 1999.
[231]
A. Yildiz, S. Guleryuz, D. P. Ankerst, D. ?ngür, and P. F. Renshaw, “Protein kinase C inhibition in the treatment of mania: a double-blind, placebo-controlled trial of tamoxifen,” Archives of General Psychiatry, vol. 65, no. 3, pp. 255–263, 2008.
[232]
R. B. Fields, D. P. van Kammen, J. L. Peters et al., “Clonidine improves memory function in schizophrenia independently from change in psychosis. Preliminary findings,” Schizophrenia Research, vol. 1, no. 6, pp. 417–423, 1988.
[233]
R. G. Mair and W. J. McEntee, “Cognitive enhancement in Korsakoff's psychosis by clonidine: a comparison with L-Dopa and ephedrine,” Psychopharmacology, vol. 88, no. 3, pp. 374–380, 1986.
[234]
A. F. T. Arnsten and P. S. Goldman-Rakic, “α2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates,” Science, vol. 230, no. 4731, pp. 1273–1276, 1985.
[235]
A. F. T. Arnsten, J. C. Steere, and R. D. Hunt, “The contribution of α2-noradrenergic mechanisms to prefrontal cortical cognitive function: potential significance for attention-deficit hyperactivity disorder,” Archives of General Psychiatry, vol. 53, no. 5, pp. 448–455, 1996.
[236]
B. J. Sahakian, J. J. Coull, and J. R. Hodges, “Selective enhancement of executive function by idazoxan in a patient with dementia of the frontal lobe type,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 1, pp. 120–121, 1994.
[237]
T. Ljungberg, L. St?hle, and U. Ungerstedt, “Effects of repeated administration of low doses of apomorphine in three behavioural models in the rat,” Journal of Neural Transmission. Parkinson's Disease and Dementia Section, vol. 1, no. 3, pp. 165–175, 1989.
[238]
T. Ljungberg and U. Ungerstedt, “Reinstatement of eating by dopamine agonists in aphagic dopamine denervated rats,” Physiology and Behavior, vol. 16, no. 3, pp. 277–283, 1976.
[239]
E. D. Ross and R. M. Stewart, “Akinetic mutism from hypothalamic damage: successful treatment with dopamine agonists,” Neurology, vol. 31, no. 11, pp. 1435–1439, 1981.
[240]
M. P. Alexander, “Reversal of chronic akinetic mutism after mesencephalic injury with dopaminergic agents.,” Neurology, vol. 45, article A330, 1995.
[241]
R. S. Marin, B. S. Fogel, J. Hawkins, J. Duffy, and B. Krupp, “Apathy: a treatable syndrome,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 7, no. 1, pp. 23–30, 1995.
[242]
M. D. Watanabe, E. M. Martin, O. A. DeLeon, M. Gaviria, D. G. Pavel, and D. W. Trepashko, “Successful methylphenidate treatment of apathy after subcortical infarcts,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 7, no. 4, pp. 502–504, 1995.
[243]
K. Barrett, “Treating organic abulia with bromocriptine and lisuride: four case studies,” Journal of Neurology Neurosurgery and Psychiatry, vol. 54, no. 8, pp. 718–721, 1991.
[244]
V. F. Holmes, F. Fernandez, and J. K. Levy, “Psychostimulant response in AIDS-related complex patients,” Journal of Clinical Psychiatry, vol. 50, no. 1, pp. 5–8, 1989.
[245]
R. W. Parks, D. J. Crockett, H. K. Manji, and W. Ammann, “Assessment of bromocriptine intervention for the treatment of frontal lobe syndrome: a case study,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 4, no. 1, pp. 109–111, 1992.
[246]
G. L. Brown and M. I. Linnoila, “CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence,” Journal of Clinical Psychiatry, vol. 51, no. 4, pp. 31–41, 1990.
[247]
E. F. Coccaro, L. J. Siever, H. M. Klar et al., “Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior,” Archives of General Psychiatry, vol. 46, no. 7, pp. 587–599, 1989.
[248]
E. F. Coccaro, “Central serotonin and impulsive aggression,” British Journal of Psychiatry, vol. 155, no. 8, pp. 52–62, 1989.
[249]
E. Hollander and C. M. Wong, “Body dysmorphic disorder, pathological gambling, and sexual compulsions,” Journal of Clinical Psychiatry, vol. 56, no. 4, pp. 7–13, 1995.
[250]
B. Olivier and J. Mos, “Serenics and aggression,” Stress Medicine, vol. 2, no. 3, pp. 197–209, 1986.
[251]
S. Bakchine, L. Lacomblez, N. Benoit, D. Parisot, F. Chain, and F. Lhermitte, “Manic-like state after bilateral orbitofrontal and right temporoparietal injury: efficacy of clonidine,” Neurology, vol. 39, no. 6, pp. 777–781, 1989.
[252]
P. N. Tariot, L. S. Schneider, J. Cummings et al., “Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease,” Archives of General Psychiatry, vol. 68, no. 8, pp. 853–861, 2011.
[253]
L. R. Baxter, E. C. Clark, M. Iqbal, and R. F. Ackerman, “Cortical subcortical system in the mediation of obsessive compulsive disorder,” in Frontal Subcortical Circuits in Psychiatric and Neurological Disorders, E. G. Lichter and J. L. Cummings, Eds., Guilford Press, New York, NY, USA, 2001.
[254]
L. R. Baxter, J. M. Schwartz, K. S. Bergman et al., “Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder,” Archives of General Psychiatry, vol. 49, no. 9, pp. 681–689, 1992.
[255]
D. F. Wong, J. R. Bra?i?, H. S. Singer et al., “Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET,” Neuropsychopharmacology, vol. 33, no. 6, pp. 1239–1251, 2008.
[256]
A. L. Brody, S. Saxena, J. M. Schwartz et al., “FDG-PET predictors of response to behavioral therapy and pharmacotherapy in obsessive compulsive disorder,” Psychiatry Research—Neuroimaging, vol. 84, no. 1, pp. 1–6, 1998.
[257]
L. Stern, J. Zohar, R. Cohen, and Y. Sasson, “Treatment of severe, drug resistant obsessive compulsive disorder with the 5HT(1D) agonist sumatriptan,” European Neuropsychopharmacology, vol. 8, no. 4, pp. 325–328, 1998.
[258]
K. O'Connor, C. Todorov, S. Robillard, F. Borgeat, and M. Brault, “Cognitive-behaviour therapy and medication in the treatment of obsessive-compulsive disorder: a controlled study,” Canadian Journal of Psychiatry, vol. 44, no. 1, pp. 64–71, 1999.
[259]
J. T. Giacino, J. Whyte, E. Bagiella et al., “Placebo-controlled trial of amantadine for severe traumatic brain injury. .,” The New England Journal of Medicine, vol. 366, pp. 819–826, 2012.
[260]
C. Willmott and J. Ponsford, “Efficacy of methylphenidate in the rehabilitation of attention following traumatic brain injury: a randomised, crossover, double blind, placebo controlled inpatient trial,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 5, pp. 552–557, 2009.
[261]
E. D. Huey, K. T. Putnam, and J. Grafman, “A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia,” Neurology, vol. 66, no. 1, pp. 17–22, 2006.
[262]
F. Lebert, W. Stekke, C. Hasenbroekx, and F. Pasquier, “Frontotemporal dementia: a randomised, controlled trial with trazodone,” Dementia and Geriatric Cognitive Disorders, vol. 17, no. 4, pp. 355–359, 2004.
[263]
F. Chollet, J. Tardy, J. F. Albucher et al., “Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial,” The Lancet Neurology, vol. 10, no. 2, pp. 123–130, 2011.
[264]
S. E. Hyman, “Can neuroscience be integrated into the DSM-V?” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 725–732, 2007.
[265]
D. J. Carlat, Unhinged: The Trouble with Psychiatry—A Doctor’s Revelations about a Profession in Crisis, Free Press, New York, NY, USA, 2010.
[266]
J. Rimer, K. Dwan, D. A. Lawlor et al., “Exercise for depression,” Cochrane Database of Systematic Reviews, no. 7, Article ID CD004366, 2012.
[267]
J. C. Lee, D. M. Blumberger, P. Fitzgerald, Z. Daskalakis, and A. Levinson, “The role of transcranial magnetic stimulation in treatment-resistant depression: a review,” Current Pharmaceutical Design, vol. 18, no. 36, pp. 5846–5852, 2012.
[268]
A. Farahani and C. U. Correll, “Are antipsychotics or antidepressants needed for psychotic depression: a systematic review and meta-analysis of trials comparing antidepressant or antipsychotic monotherapy with combination treatment,” Journal of Clinical Psychiatry, vol. 73, no. 4, pp. 486–496, 2012.
[269]
I. Apostolova, S. Block, R. Buchert et al., “Effects of behavioral therapy or pharmacotherapy on brain glucose metabolism in subjects with obsessive-compulsive disorder as assessed by brain FDG PET,” Psychiatry Research: Neuroimaging, vol. 184, no. 2, pp. 105–116, 2010.
[270]
A. C. Butler, J. E. Chapman, E. M. Forman, and A. T. Beck, “The empirical status of cognitive-behavioral therapy: a review of meta-analyses,” Clinical Psychology Review, vol. 26, no. 1, pp. 17–31, 2006.
[271]
S. D. Martin, E. Martin, S. S. Rai, M. A. Richardson, and R. Royall, “Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride: preliminary findings,” Archives of General Psychiatry, vol. 58, no. 7, pp. 641–648, 2001.
[272]
D. D. Dougherty, A. P. Weiss, G. R. Cosgrove et al., “Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression,” Journal of Neurosurgery, vol. 99, no. 6, pp. 1010–1017, 2003.
[273]
S. R. Chamberlain, N. del Campo, J. Dowson et al., “Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder,” Biological Psychiatry, vol. 62, no. 9, pp. 977–984, 2007.
[274]
H. S. Panitch, R. A. Thisted, R. A. Smith et al., “Randomized, controlled trial of dextromethorphan/quinidine for pseudobulbar affect in multiple sclerosis,” Annals of Neurology, vol. 59, no. 5, pp. 780–787, 2006.
[275]
A. Miller, H. Pratt, and R. B. Schiffer, “Pseudobulbar affect: the spectrum of clinical presentations, etiologies and treatments,” Expert Review of Neurotherapeutics, vol. 11, no. 7, pp. 1077–1088, 2011.
[276]
R. J. Davidson, Begley S in Their Book the Emotional Life of Your Brain, Hudson Street Press, 2012.
[277]
G. A. Fava and E. Tomba, “Increasing psychological well-being and resilience by psychotherapeutic methods,” Journal of Personality, vol. 77, no. 6, pp. 1903–1934, 2009.
[278]
B. K. Hodie;lzel, U. Ott, T. Gard et al., “Investigation of mindfulness meditation practitioners with voxel-based morphometry,” Social Cognitive and Affective Neuroscience, vol. 3, no. 1, pp. 55–61, 2008.
[279]
S. F. Cappa, T. Benke, S. Clarke, B. Rossi, B. Stemmer, and C. M. van Heugten, “EFNS guidelines on cognitive rehabilitation: report of an EFNS task force,” European Journal of Neurology, vol. 12, no. 9, pp. 665–680, 2005.
[280]
S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial,” Journal of the American Medical Association, vol. 296, no. 17, pp. 2095–2104, 2006.
[281]
S. L. Wolf, P. A. Thompson, C. J. Winstein et al., “The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy,” Stroke, vol. 41, no. 10, pp. 2309–2315, 2010.
[282]
M. S. George, S. H. Lisanby, D. Avery et al., “Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial,” Archives of General Psychiatry, vol. 67, no. 5, pp. 507–516, 2010.
[283]
V. S. Ramachandran and E. L. Altschuler, “The use of visual feedback, in particular mirror visual feedback, in restoring brain function,” Brain, vol. 132, no. 7, pp. 1693–1710, 2009.
[284]
C. S. McCabe, R. C. Haigh, E. F. J. Ring, P. W. Halligan, P. D. Wall, and D. R. Blake, “A controlled pilot study of the utility of mirror visual feedback in the treatment of complex regional pain syndrome (type 1),” Rheumatology, vol. 42, no. 1, pp. 97–101, 2003.
[285]
G. Yavuzer, R. Selles, N. Sezer et al., “Mirror therapy improves hand function in subacute stroke a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 3, pp. 393–398, 2008.
[286]
S. Sütbeyaz, G. Yavuzer, N. Sezer, and B. F. Koseoglu, “Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 5, pp. 555–559, 2007.
[287]
M. Franceschini, M. Agosti, A. Cantagallo, P. Sale, M. Mancuso, and G. Buccino, “Mirror neurons: action observation treatment as a tool in stroke rehabilitation,” European journal of physical and rehabilitation medicine, vol. 46, no. 4, pp. 517–523, 2010.
[288]
P. Sale and M. Franceschini, “Action observation and mirror neuron network a tool for motor stroke rehabilitation,” European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 2, pp. 313–318, 2012.