全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures

DOI: 10.1155/2013/875834

Full-Text   Cite this paper   Add to My Lib

Abstract:

The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed. 1. Introduction Absence seizures, typical for many different patients with absence epilepsy, principally differ from convulsive seizures. To illustrate, a number of widely used and efficient anticonvulsant drugs enhance absence seizures in patients and in the genetic absence models and ethosuximide is only effective in suppressing absence seizures and completely ineffective in other types of seizures [1–3]. Absence epilepsy is characterized by the occurrence of spontaneous occurring spike-wave discharges (SWDs) and periods of reduced alertness or responsiveness. The SWDs are induced by hyperpolarization and they appear on an otherwise normal EEG. The spike of the SWD represents an excitatory postsynaptic potential and bursts of action potentials (Figure 1(b)) of thalamocortical and corticothalamic cells, the wave a slow wave in the EEG, is the subsequent inhibitory phase [4, 5]. The generalized and widespread bilaterally synchronous SWDs are the result of highly synchronized oscillations in corticothalamocortical networks. SWDs, as can be found in WAG/Rij rats, have a local cortical origin in the perioral region of the somatosensory cortex [6–12], which is now confirmed in GAERS [13, 14], another well validated and often used strain of rats with absence epilepsy [15, 16]. Local injections in the perioral region of the somatosensory cortex of the T-type Ca2+ channel blocker ethosuximide was rather effective in suppressing

References

[1]  A. M. L. Coenen, E. H. M. Blezer, and E. L. J. M. van Luijtelaar, “Effects of the GABA-uptake inhibitor tiagabine on electroencephalogram, spike-wave discharges and behaviour of rats,” Epilepsy Research, vol. 21, no. 2, pp. 89–94, 1995.
[2]  D. A. Hosford and Y. Wang, “Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures,” Epilepsia, vol. 38, no. 4, pp. 408–414, 1997.
[3]  M. Z. G?ren and F. Onat, “Ethosuximide: from bench to bedside,” CNS Drug Reviews, vol. 13, no. 2, pp. 224–239, 2007.
[4]  M. Inoue, J. Duysens, J. M. H. Vossen, and A. M. L. Coenen, “Thalamic multiple-unit activity underlying spike-wave discharges in anesthetized rats,” Brain Research, vol. 612, no. 1-2, pp. 35–40, 1993.
[5]  T. Seidenbecher, R. Staak, and H. C. Pape, “Relations between cortical and thalamic cellular activities during absence seizures in rats,” European Journal of Neuroscience, vol. 10, no. 3, pp. 1103–1112, 1998.
[6]  H. K. M. Meeren, J. P. M. Pijn, E. L. J. M. van Luijtelaar, A. M. L. Coenen, and F. H. L. da Silva, “Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats,” Journal of Neuroscience, vol. 22, no. 4, pp. 1480–1495, 2002.
[7]  H. Meeren, G. van Luijtelaar, F. L. da Silva, and A. Coenen, “Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory,” Archives of Neurology, vol. 62, no. 3, pp. 371–376, 2005.
[8]  A. A. Gurbanova, R. Aker, K. Berkman, F. Y. Onat, C. M. van Rijn, and G. van Luijtelaar, “Effect of systemic and intracortical administration of phenytoin in two genetic models of absence epilepsy,” The British Journal of Pharmacology, vol. 148, no. 8, pp. 1076–1082, 2006.
[9]  G. van Luijtelaar and E. Sitnikova, “Global and focal aspects of absence epilepsy: the contribution of genetic models,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 7, pp. 983–1003, 2006.
[10]  G. van Luijtelaar, E. Sitnikova, and A. Lüttjohann, “On the origin and suddenness of absences in genetic absence models,” Clinical EEG and Neuroscience, vol. 42, no. 2, pp. 83–97, 2011.
[11]  A. Lüttjohann, S. Zhang, R. de Peijper, and G. van Luijtelaar, “Electrical stimulation of the epileptic focus in absence epileptic WAG/Rij rats: assessment of local and network excitability,” Neuroscience, vol. 188, pp. 125–134, 2011.
[12]  A. Lüttjohann and G. van Luijtelaar, “The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal LFPs in absence epilepsy,” Neurobiology of Disease, vol. 47, no. 1, pp. 49–60, 2012.
[13]  D. Pinault, “Cellular interactions in the rat somatosensory thalamocortical system during normal epileptic 5–9?Hz oscillations,” Journal of Physiology, vol. 552, part 3, pp. 881–905, 2003.
[14]  P. O. Polack, I. Guillemain, E. Hu, C. Deransart, A. Depaulis, and S. Charpier, “Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures,” Journal of Neuroscience, vol. 27, no. 24, pp. 6590–6599, 2007.
[15]  L. Danober, C. Deransart, A. Depaulis, M. Vergnes, and C. Marescaux, “Pathophysiological mechanisms of genetic absence epilepsy in the rat,” Progress in Neurobiology, vol. 55, no. 1, pp. 27–57, 1998.
[16]  A. Depaulis and G. van Luijtelaar, “Genetic models of absence epilepsy in the rat,” in Models of Seizures and Epilepsy, A. Pitkanen, P. A. Schwartzskroin, and S. L. Moshe, Eds., pp. 233–248, Elsevier/Academic Press, San Diego, Calif, USA, 2006.
[17]  J. P. Manning, D. A. Richards, N. Leresche, V. Crunelli, and N. G. Bowery, “Cortical-area specific block of genetically determined absence seizures by ethosuximide,” Neuroscience, vol. 123, no. 1, pp. 5–9, 2004.
[18]  S. D. Chen, K. H. Yeh, Y. H. Huang, and F. Z. Shaw, “Effect of intracranial administration of ethosuximide in rats with spontaneous or pentylenetetrazol-induced spike-wave discharges,” Epilepsia, vol. 52, no. 7, pp. 1311–1318, 2011.
[19]  M. Steriade and R. R. Llinas, “The functional states of the thalamus and the associated neuronal interplay,” Physiological Reviews, vol. 68, no. 3, pp. 649–742, 1988.
[20]  H. K. M. Meeren, J. G. Veening, T. A. E. M?derscheim, A. M. L. Coenen, and G. van Luijtelaar, “Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles,” Experimental Neurology, vol. 217, no. 1, pp. 25–37, 2009.
[21]  G. Buzsaki, A. Smith, S. Berger, L. J. Fisher, and F. H. Gage, “Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker,” Neuroscience, vol. 36, no. 1, pp. 1–14, 1990.
[22]  R. Staak and H. C. Pape, “Contribution of and receptors to thalamic neuronal activity during spontaneous absence seizures in rats,” Journal of Neuroscience, vol. 21, no. 4, pp. 1378–1384, 2001.
[23]  P. O. Polack, S. Mahon, M. Chavez, and S. Charpier, “Inactivation of the somatosensory cortex prevents paroxysmal oscillations in cortical and related thalamic neurons in a genetic model of absence epilepsy,” Cerebral Cortex, vol. 19, no. 9, pp. 2078–2091, 2009.
[24]  M. D. Holmes, M. Brown, and D. M. Tucker, “Are “generalized” seizures truly generalized? Evidence of localized mesial frontal and frontopolar discharges in absence,” Epilepsia, vol. 45, no. 12, pp. 1568–1579, 2004.
[25]  D. M. Tucker, M. Brown, P. Luu, and M. D. Holmes, “Discharges in ventromedial frontal cortex during absence spells,” Epilepsy and Behavior, vol. 11, no. 4, pp. 546–557, 2007.
[26]  F. Amor, S. Baillet, V. Navarro, C. Adam, J. Martinerie, and M. le van Quyen, “Cortical local and long-range synchronization interplay in human absence seizure initiation,” NeuroImage, vol. 45, no. 3, pp. 950–962, 2009.
[27]  I. Westmijse, P. Ossenblok, B. Gunning, and G. van Luijtelaar, “Onset and propagation of spike and slow wave discharges in human absence epilepsy: a MEG study,” Epilepsia, vol. 50, no. 12, pp. 2538–2548, 2009.
[28]  D. Gupta, P. Ossenblok, and G. van Luijtelaar, “Space-time network connectivity and cortical activations preceding spike wave discharges in human absence epilepsy: a MEG study,” Medical and Biological Engineering and Computing, vol. 49, no. 5, pp. 555–565, 2011.
[29]  P. Ossenblok, P. van de Houdt, A. Lüttjohann, and G. van Luijtelaar, “Network analysis of generalized epileptic discharges 5th workshop on Seizure prediction,” accepted, 2013.
[30]  A. S. Bazyan and O. L. Segal, “Hyperpolarization-activated pacemaker channel in the mammalian brain,” Neurochemical Journal, vol. 4, no. 4, pp. 241–251, 2010.
[31]  E. L. J. M. van Luijtelaar and A. M. L. Coenen, “Two types of electrocortical paroxysms in an inbred strain of rats,” Neuroscience Letters, vol. 70, no. 3, pp. 393–397, 1986.
[32]  I. S. Midzianovskaia, G. D. Kuznetsova, A. M. L. Coenen, A. M. Spiridonov, and E. L. J. M. van Luijtelaar, “Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats,” Brain Research, vol. 911, no. 1, pp. 62–70, 2001.
[33]  V. Crunelli and N. Leresche, “Childhood absence epilepsy: genes, channels, neurons and networks,” Nature Reviews Neuroscience, vol. 3, no. 5, pp. 371–382, 2002.
[34]  A. M. L. Coenen and E. L. J. M. van Luijtelaar, “Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats,” Behavior Genetics, vol. 33, no. 6, pp. 635–655, 2003.
[35]  D. L. Burgess, “Transgenic and gene replacement models of epilepsy: targeting ion channel and pathways in mice,” in Models of Seizures and Epilepsy, A. Pitkanen, P. A. Schwartzkroin, and S. L. Moshe, Eds., pp. 199–222, Elsevier Academic Press, San Diego, Calif, USA, 2006.
[36]  J. L. Noebels, “Spontaneous epileptic mutations in the mouse,” in Models of Seizures and Epilepsy, A. Pitkanen, P. A. Schwartzkroin, and S. L. Moshe, Eds., pp. 223–232, Elsevier/Academic Press, San Diego, Calif, USA, 2006.
[37]  V. Santucci, M. Fournier, and P. Keane, “EEG effects of IV infusion of pentylenetetrazol in rats: a model for screening and classifying antiepileptic compounds,” Psychopharmacology, vol. 87, no. 3, pp. 337–343, 1985.
[38]  M. A. Cortez, C. McKerlie, and O. C. Snead III, “A model of atypical absence seizures: EEG, pharmacology, and developmental characterization,” Neurology, vol. 56, no. 3, pp. 341–349, 2001.
[39]  M. A. Cortez and O. C. Snead III, “Pharmacological models of generalized absence seizures in rodents,” in Models of Seizures and Epilepsy, M. Pitkanen, P. Schwartzkroin, and S. Moshé, Eds., pp. 111–126, Elsevier/Academic Press, San Diego, Calif, USA, 2006.
[40]  I. Serbanescu, M. A. Cortez, C. McKerlie, and O. C. Snead III, “Refractory atypical absence seizures in rat: a two hit model,” Epilepsy Research, vol. 62, no. 1, pp. 53–63, 2004.
[41]  F. Y. Onat, G. van Luijtelaar, A. Nehlig, and O. Carter Snead III, “The involvement of limbic structures in typical and atypical Absence Epilepsy,” Epilepsy Research, vol. 103, no. 2-3, pp. 111–123, 2013.
[42]  G. van Luijtelaar and A. M. Coenen, “Genetic models of absence epilepsy,” in Encyclopedia of Basic Epilepsy Research, P. Schwartzkroin, Ed., vol. 1, pp. 1–8, Academic Press, Oxford, UK, 2009.
[43]  T. Broicher, T. Kanyshkova, P. Meuth, H. C. Pape, and T. Budde, “Correlation of T-channel coding gene expression, IT, and the low threshold Ca2+ spike in the thalamus of a rat model of absence epilepsy,” Molecular and Cellular Neuroscience, vol. 39, no. 3, pp. 384–399, 2008.
[44]  Y. Chen, J. Lu, H. Pan et al., “Association between genetic variation of CACNA1H and childhood absence epilepsy,” Annals of Neurology, vol. 54, no. 2, pp. 239–243, 2003.
[45]  I. Vitko, I. Bidaud, J. M. Arias, A. Mezghrani, P. Lory, and E. Perez-Reyes, “The I-II loop controls plasma membrane expression and gating of Ca v3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations,” Journal of Neuroscience, vol. 27, no. 2, pp. 322–330, 2007.
[46]  I. I. Arias-Olguín, I. Vitko, M. Fortuna et al., “Characterization of the gating brake in the I-II loop of Cav3.2 T-type Ca2+ channels,” The Journal of Biological Chemistry, vol. 283, no. 13, pp. 8136–8144, 2008.
[47]  X. B. Liu, J. Coble, G. van Luijtelaar, and E. G. Jones, “Reticular nucleus-specific changes in α3 subunit protein at GABA synapses in genetically epilepsy-prone rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12512–12517, 2007.
[48]  D. N. Bowser, D. A. Wagner, C. Czajkowski et al., “Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [γ2(R43Q)] found in human epilepsy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 15170–15175, 2002.
[49]  J. Kang and R. L. Macdonald, “The receptor γ2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of α1β2α2S receptors in the endoplasmic reticulum,” Journal of Neuroscience, vol. 24, no. 40, pp. 8672–8677, 2004.
[50]  K. Y. Sarkisova, I. S. Midzianovskaia, and M. A. Kulikov, “Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy,” Behavioural Brain Research, vol. 144, no. 1-2, pp. 211–226, 2003.
[51]  K. Sarkisova and G. van Luijtelaar, “The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depressiony,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 4, pp. 854–876, 2011.
[52]  G. van Luijtelaar, “The prevention of behavioral consequences of idiopathic generalized epilepsy: evidence from rodent models,” Neuroscience Letters, vol. 497, no. 3, pp. 177–184, 2011.
[53]  H. Jahnsen and R. Llinás, “Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurons in vitro,” Journal of Physiology, vol. 349, pp. 227–247, 1984.
[54]  D. A. McCormick and T. Bal, “Sleep and arousal: thalamocortical mechanisms,” Annual Review of Neuroscience, vol. 20, pp. 185–215, 1997.
[55]  A. S. Bazyan, “Two types of epilepsy models and processes of cognition: pentylenetetrazole kindling and absence epilepsy of WAG/Rij rats strain,” in Underlying Mechanisms of Epilepsy, F. S. Kaneez, Ed., pp. 283–302, InTech, Rijeka, Croatia, 2011.
[56]  R. Gauss, R. Seifert, and U. B. Kaupp, “Molecular identification of a hyperpolarization-activated channel in sea urchin sperm,” Nature, vol. 393, no. 6685, pp. 583–587, 1998.
[57]  A. Ludwig, X. Zong, M. Jeglitsch, F. Hofmann, and M. Biel, “A family of hyperpolarization-activated mammalian cation channels,” Nature, vol. 393, no. 6685, pp. 587–591, 1998.
[58]  B. Santoro, D. T. Liu, H. Yao et al., “Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain,” Cell, vol. 93, no. 5, pp. 717–729, 1998.
[59]  J. Chen, J. S. Mitcheson, M. Lin, and M. C. Sanguinetti, “Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 36465–36471, 2000.
[60]  T. Xue and R. A. Li, “An external determinant in the S5-P linker of the pacemaker (HCN) channel identified by sulfhydryl modification,” The Journal of Biological Chemistry, vol. 277, no. 48, pp. 46233–46242, 2002.
[61]  N. Decher, J. Chen, and M. C. Sanguinetti, “Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers,” The Journal of Biological Chemistry, vol. 279, no. 14, pp. 13859–13865, 2004.
[62]  T. Xue, E. Marbán, and R. A. Li, “Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization,” Circulation Research, vol. 90, no. 12, pp. 1267–1273, 2002.
[63]  S. Chen, J. Wang, and S. A. Siegelbaum, “Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide,” Journal of General Physiology, vol. 117, no. 5, pp. 491–504, 2001.
[64]  C. Ulens and J. Tytgat, “Functional heteromerization of HCN1 and HCN2 pacemaker channels,” The Journal of Biological Chemistry, vol. 276, no. 9, pp. 6069–6072, 2001.
[65]  J. P. Bénitah, G. F. Tomaselli, and E. Marbán, “Adjacent pore-lining residues within sodium channels identified by paired cysteine mutagenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 14, pp. 7392–7396, 1996.
[66]  R. G. Tsushima, R. A. Li, and P. H. Backx, “P-loop flexibility in Na+ channel pores revealed by single- and double-cysteine replacements,” Journal of General Physiology, vol. 110, no. 1, pp. 59–72, 1997.
[67]  D. E. Clapham, “Not so funny anymore: pacing channels are cloned,” Neuron, vol. 21, no. 1, pp. 5–7, 1998.
[68]  J. Wang, S. Chen, and S. A. Siegelbaum, “Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions,” Journal of General Physiology, vol. 118, no. 3, pp. 237–250, 2001.
[69]  J. Chen, J. S. Mitcheson, M. Tristani-Firouzi, M. Lin, and M. C. Sanguinetti, “The S4-S5 linker couples voltage sensing and activation of pacemaker channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11277–11282, 2001.
[70]  N. P. Poolos, “The Yin and Yang of the H-channel and its role in epilepsy,” Epilepsy Currents, vol. 4, no. 1, pp. 3–6, 2004.
[71]  E. Sitnikova and G. van Luijtelaar, “Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats,” Epilepsia, vol. 48, no. 12, pp. 2296–2311, 2007.
[72]  A. Ludwig, T. Budde, J. Stieber et al., “Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2,” EMBO Journal, vol. 22, no. 2, pp. 216–224, 2003.
[73]  U. Strauss, M. H. P. Kole, A. U. Br?uer et al., “An impaired neocortical Ih is associated with enhanced excitability and absence epilepsy,” European Journal of Neuroscience, vol. 19, no. 11, pp. 3048–3058, 2004.
[74]  U. Schridde, U. Strauss, A. U. Br?uer, and G. van Luijtelaar, “Environmental manipulations early in development alter seizure activity, Ih and HCN1 protein expression later in life,” European Journal of Neuroscience, vol. 23, no. 12, pp. 3346–3358, 2006.
[75]  M. Kuisle, N. Wanaverbecg, A. L. Brewster et al., “Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy,” Journal of Physiology, vol. 575, no. 1, pp. 83–100, 2006.
[76]  M. H. P. Kole, A. U. Br?uer, and G. J. Stuart, “Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model,” Journal of Physiology, vol. 578, part 2, pp. 507–525, 2007.
[77]  B. Santoro, S. G. N. Grant, D. Bartsch, and E. R. Kandel, “Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide-gated channels,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14815–14820, 1997.
[78]  B. Santoro, S. Chen, A. Lüthi et al., “Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS,” Journal of Neuroscience, vol. 20, no. 14, pp. 5264–5275, 2000.
[79]  M. Inoue, B. W. M. M. Peeters, E. L. J. M. van Luijtelaar, J. M. H. Vossen, and A. M. L. Coenen, “Spontaneous occurrence of spike-wave discharges in five inbred strains of rats,” Physiology and Behavior, vol. 48, no. 1, pp. 199–201, 1990.
[80]  U. Schridde and G. van Luijtelaar, “The influence of strain and housing on two types of spike-wave discharges in rats,” Genes, Brain and Behavior, vol. 3, no. 1, pp. 1–7, 2004.
[81]  U. Schridde and G. van Luijtelaar, “The role of the environment on the development of spike-wave discharges in two strains of rats,” Physiology and Behavior, vol. 84, no. 3, pp. 379–386, 2005.
[82]  H. Blumenfeld, J. P. Klein, U. Schridde et al., “Early treatment suppresses the development of spike-wave epilepsy in a rat model,” Epilepsia, vol. 49, no. 3, pp. 400–409, 2008.
[83]  T. Bal and D. A. McCormick, “Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker,” Journal of Physiology, vol. 468, pp. 669–691, 1993.
[84]  H. Jahnsen and R. Llinás, “Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study,” Journal of Physiology, vol. 349, pp. 205–226, 1984.
[85]  D. A. McCormick and H. C. Pape, “Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones,” Journal of Physiology, vol. 431, pp. 291–318, 1990.
[86]  M. Steriade, D. A. McCormick, and T. J. Sejnowski, “Thalamocortical oscillations in the sleeping and aroused brain,” Science, vol. 262, no. 5134, pp. 679–685, 1993.
[87]  D. Pinault, N. Leresche, S. Charpier et al., “Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy,” Journal of Physiology, vol. 509, no. 2, pp. 449–456, 1998.
[88]  S. Charpier, N. Leresche, J. M. Deniau, S. Mahon, S. W. Hughes, and V. Crunelli, “On the putative contribution of receptors to the electrical events occurring during spontaneous spike and wave discharges,” Neuropharmacology, vol. 38, no. 11, pp. 1699–1706, 1999.
[89]  A. Lüthi, T. Bal, and D. A. McCormick, “Periodicity of thalamic spindle waves is abolished by ZD7288, a blocker of ,” Journal of Neurophysiology, vol. 79, no. 6, pp. 3284–3289, 1998.
[90]  I. Soltesz, S. Lightowler, N. Leresche, D. Jassik-Gerschenfeld, and C. E. V. P. Crunelli, “Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells,” Journal of Physiology, vol. 441, pp. 175–197, 1991.
[91]  M. von Krosigk, T. Bal, and D. A. McCormick, “Cellular mechanisms of a synchronized oscillation in the thalamus,” Science, vol. 261, no. 5119, pp. 361–364, 1993.
[92]  T. Bal and D. A. McCormick, “What stops synchronized thalamocortical oscillations?” Neuron, vol. 17, no. 2, pp. 297–308, 1996.
[93]  A. Lüthi and D. A. McCormick, “H-current: properties of a neuronal and network pacemaker,” Neuron, vol. 21, no. 1, pp. 9–12, 1998.
[94]  A. Lüthi and D. A. McCormick, “Ca2+-mediated up-regulation of Ih in the thalamus. How cell-intrinsic ionic currents may shape network activity,” Annals of the New York Academy of Sciences, vol. 868, pp. 765–769, 1999.
[95]  K. H. Lee and D. A. McCormick, “Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro,” Neuron, vol. 17, no. 2, pp. 309–321, 1996.
[96]  S. W. Hughes, D. W. Cope, and V. Crunelli, “Dynamic clamp study of I(h) modulation of burst firing and δ oscillations in thalamocortical neurons in vitro,” Neuroscience, vol. 87, no. 3, pp. 541–550, 1998.
[97]  B. W. Yue and J. R. Huguenard, “The role of H-current in regulating strength and frequency of thalamic network oscillations,” Thalamus and Related Systems, vol. 1, no. 2, pp. 95–103, 2001.
[98]  T. Budde, L. Caputi, T. Kanyshkova et al., “Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy,” Journal of Neuroscience, vol. 25, no. 43, pp. 9871–9882, 2005.
[99]  R. Citraro, E. Russo, E. D. Di Paola et al., “Effects of some neurosteroids injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy,” Neuropharmacology, vol. 50, no. 8, pp. 1059–1071, 2006.
[100]  R. Citraro, E. Russo, S. Gratteri et al., “Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy,” Neuropharmacology, vol. 51, no. 6, pp. 1058–1067, 2006.
[101]  S. R. Williams and G. J. Stuart, “Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons,” Journal of Physiology, vol. 521, no. 2, pp. 467–482, 1999.
[102]  C. Lüscher, L. Y. Jan, M. Stoffel, R. C. Malenka, and R. A. Nicoll, “G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons,” Neuron, vol. 19, no. 3, pp. 687–695, 1997.
[103]  J. W. Sohn, D. Lee, H. Cho et al., “Receptor-specific inhibition of -activated K+ currents by muscarinic and metabotropic glutamate receptors in immature rat hippocampus,” Journal of Physiology, vol. 580, no. 2, pp. 411–422, 2007.
[104]  F. Ciruela, V. Fernández-Due?as, K. Sahlholm et al., “Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits,” European Journal of Neuroscience, vol. 32, no. 8, pp. 1265–1277, 2010.
[105]  R. L. Macdonald and R. W. Olsen, “ receptor channels,” Annual Review of Neuroscience, vol. 17, pp. 569–602, 1994.
[106]  E. Costa, “From GABAA receptor diversity emerges a unified vision of GABAergic inhibition,” Annual Review of Pharmacology and Toxicology, vol. 38, pp. 321–350, 1998.
[107]  A. K. Mehta and M. K. Ticku, “An update on receptors,” Brain Research Reviews, vol. 29, no. 2-3, pp. 196–217, 1999.
[108]  A. M. L. Coenen and E. L. J. M. van Luijtelaar, “Effects of diazepam and two β-carbolines on epileptic activity and on EEG and behavior in rats with absence seizures,” Pharmacology Biochemistry and Behavior, vol. 32, no. 1, pp. 27–35, 1989.
[109]  E. L. J. M. van Luijtelaar, D. N. Stephens, and A. M. L. Coenen, “Comparison of abecarnil and diazepam on hypnotic activity in rats,” in Sleep '90, J. Horne, Ed., pp. 152–154, Pontenagel Press, Bochum, Germany, 1990.
[110]  A. M. L. Coenen, D. N. Stephens, and E. L. J. M. van Luijtelaar, “Effects of the β-carboline abecarnil on epileptic activity, EEG, sleep and behavior of rats,” Pharmacology Biochemistry and Behavior, vol. 42, no. 3, pp. 401–405, 1992.
[111]  A. M. L. Coenen, W. H. I. M. Drinkenburg, M. Inoue, and E. L. J. M. van Luijtelaar, “Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats,” Epilepsy Research, vol. 12, no. 2, pp. 75–86, 1992.
[112]  M. Vergnes, A. Boehrer, X. He et al., “Differential sensitivity to inverse agonists of /benzodiazepine receptors in rats with genetic absence-epilepsy,” Epilepsy Research, vol. 47, no. 1-2, pp. 43–53, 2001.
[113]  H. Depoortere, D. Fran?on, E. L. J. M. van Luijtelaar, W. H. I. M. Drinkenburg, and A. M. L. Coenen, “Differential effects of midazolam and zolpidem on sleep-wake states and epileptic activity in WAG/Rij rats,” Pharmacology Biochemistry and Behavior, vol. 51, no. 4, pp. 571–576, 1995.
[114]  B. W. M. M. Peeters, C. M. van Rijn, D. J. Nutt, M. N. G. Titulaer, J. M. H. Vossen, and A. M. L. Coenen, “Diazepam and Ro 15-1788 increase absence epilepsy in WAG/Rij rats chronically exposed to diazepam,” European Journal of Pharmacology, vol. 178, no. 1, pp. 111–114, 1990.
[115]  C. Marescaux, G. Micheletti, M. Vergnes, L. Rumbach, and J. M. Warter, “Diazepam antagonizes GABAmimetics in rats with spontaneous petit mal-like epilepsy,” European Journal of Pharmacology, vol. 113, no. 1, pp. 19–24, 1985.
[116]  R. Rupprecht and F. Holsboer, “Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives,” Trends in Neurosciences, vol. 22, no. 9, pp. 410–416, 1999.
[117]  R. A. Grünewald, V. Aliberti, and C. P. Panayiotopoulos, “Exacerbation of typical absence seizures by progesterone,” Seizure, vol. 1, no. 2, pp. 137–138, 1992.
[118]  T. B?ckstr?m, B. Zetterlund, S. Blom, and M. Romano, “Effects of intravenous progesterone infusions on the epileptic discharge frequency in women with partial epilepsy,” Acta Neurologica Scandinavica, vol. 69, no. 4, pp. 240–248, 1984.
[119]  O. C. Snead III, “Ganaxolone, a selective, high-affinity steroid modulator of the γ-aminobutyric acid-A receptor, exacerbates seizures in animal models of absence,” Annals of Neurology, vol. 44, no. 4, pp. 688–691, 1998.
[120]  B. Budziszewska, G. van Luijtelaar, A. M. L. Coenen, M. Le?kiewicz, and W. Lasoń, “Effects of neurosteroids on spike-wave discharges in the genetic epileptic WAG/Rij rat,” Epilepsy Research, vol. 33, no. 1, pp. 23–29, 1999.
[121]  G. van Luijtelaar, B. Budziszewska, L. Jaworska-Feil, J. Ellis, A. Coenen, and W. Lasoń, “The ovarian hormones and absence epilepsy: a long-term EEG study and pharmacological effects in a genetic absence epilepsy model,” Epilepsy Research, vol. 46, no. 3, pp. 225–239, 2001.
[122]  G. van Luijtelaar, B. Budziszewska, M. Tetich, and W. Lason, “Finasteride inhibits the progesterone-induced spike-wave discharges in a genetic model of absence epilepsy,” Pharmacology Biochemistry and Behavior, vol. 75, no. 4, pp. 889–894, 2003.
[123]  V. Persad, C. G. T. Wong, M. A. Cortez, Y. T. Wang, and O. C. Snead, “Hormonal regulation of atypical absence seizures,” Annals of Neurology, vol. 55, no. 3, pp. 353–361, 2004.
[124]  B. W. M. M. Peeters, C. M. Van Rijn, J. M. H. Vossen, and A. M. L. Coenen, “Effects of GABAergic agents on spontaneous non-convulsive epilepsy, EEG and behaviour, in the WAG/Rij inbred strain of rats,” Life Sciences, vol. 45, no. 13, pp. 1171–1176, 1989.
[125]  M. Vergnes, C. Marescaux, G. Micheletti, A. Depaulis, L. Rumbach, and J. M. Warter, “Enhancement of spike and wave discharges by gabamimetic drugs in rats with spontaneous petit-mal-like epilepsy,” Neuroscience Letters, vol. 44, no. 1, pp. 91–94, 1984.
[126]  A. Puigcerver, E. L. J. M. van Luijtelaar, W. H. I. M. Drinkenburg, and A. L. M. Coenen, “Effects of the antagonist CGP 35348 on sleep-wake states, behaviour, and spike-wave discharges in old rats,” Brain Research Bulletin, vol. 40, no. 3, pp. 157–162, 1996.
[127]  D. Getova, N. G. Bowery, and V. Spassov, “Effects of receptor antagonists on learning and memory retention in a rat model of absence epilepsy,” European Journal of Pharmacology, vol. 320, no. 1, pp. 9–13, 1997.
[128]  D. A. Hosford, S. Clark, Z. Cao et al., “The role of receptor activation in absence seizures of lethargic (lh/lh) mice,” Science, vol. 257, no. 5068, pp. 398–401, 1992.
[129]  D. A. Hosford, F. H. Lin, D. L. Kraemer, Z. Cao, Y. Wang, and J. T. Wilson Jr., “Neural network of structures in which receptors regulate absence seizures in the lethargic (lh/lh) mouse model,” Journal of Neuroscience, vol. 15, no. 11, pp. 7367–7376, 1995.
[130]  D. A. Hosford, Y. Wang, C. C. Liu, and O. C. Snead, “Characterization of the antiabsence effects of SCH 50911, a receptor antagonist, in the lethargic mouse, γ-hydroxybutyrate, and pentylenetetrazole models,” Journal of Pharmacology and Experimental Therapeutics, vol. 274, no. 3, pp. 1399–1403, 1995.
[131]  O. C. Snead, “Antiabsence seizure activity of specific and γ-hydroxybutyric acid receptor antagonists,” Pharmacology Biochemistry and Behavior, vol. 53, no. 1, pp. 73–79, 1996.
[132]  Z. Liu, M. Vergnes, A. Depaulis, and C. Marescaux, “Involvement of intrathalamic neurotransmission in the control of absence seizures in the rat,” Neuroscience, vol. 48, no. 1, pp. 87–93, 1992.
[133]  M. Vergnes, A. Boehrer, S. Simler, R. Bernasconi, and C. Marescaux, “Opposite effects of receptor antagonists on absences and convulsive seizures,” European Journal of Pharmacology, vol. 332, no. 3, pp. 245–255, 1997.
[134]  D. P. Getova and N. G. Bowery, “Effects of high-affinity receptor antagonists on active and passive avoidance responding in rodents with γ-hydroxybutyrolactone-induced absence syndrome,” Psychopharmacology, vol. 157, no. 1, pp. 89–95, 2001.
[135]  R. M. Kamiński, C. M. van Rijn, W. A. Turski, S. J. Czuczwar, and G. van Luijtelaar, “AMPA and receptor antagonists and their interaction in rats with a genetic form of absence epilepsy,” European Journal of Pharmacology, vol. 430, no. 2-3, pp. 251–259, 2001.
[136]  K. A. Smith and R. S. Fisher, “The selective antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model,” Brain Research, vol. 729, no. 2, pp. 147–150, 1996.
[137]  A. Skardoutsou, K. A. Voudris, and E. A. Vagiakou, “Non-convulsive status epilepticus associated with tiagabine therapy in children,” Seizure, vol. 12, no. 8, pp. 599–601, 2003.
[138]  S. Knake, H. M. Hamer, U. Schomburg, W. H. Oertel, and F. Rosenow, “Tiagabine-induced absence status in idiopathic generalized epilepsy,” Seizure, vol. 8, no. 5, pp. 314–317, 1999.
[139]  A. Vinton, A. J. Kornberg, M. Cowley, Z. Matkovic, C. Kilpatrick, and T. J. O'Brien, “Tiagabine-induced generalised non convulsive status epilepticus in patients with lesional focal epilepsy,” Journal of Clinical Neuroscience, vol. 12, no. 2, pp. 128–133, 2005.
[140]  F. Y. Onat, R. G. Aker, A. A. Gurbanova, N. Ate?, and G. van Luijtelaar, “The effect of generalized absence seizures on the progression of kindling in the rat,” Epilepsia, vol. 48, no. 5, pp. 150–156, 2007.
[141]  E. A. Tolmacheva and G. van Luijtelaar, “Absence seizures are reduced by the enhancement of GABA-ergic inhibition in the hippocampus in WAG/Rij rats,” Neuroscience Letters, vol. 416, no. 1, pp. 17–21, 2007.
[142]  E. L. J. M. van Luijtelaar, W. H. I. M. Drinkenburg, C. M. van Rijn, and A. M. L. Coenen, “Rat models of genetic absence epilepsy: what do EEG spike-wave discharges tell us about drug effects?” Methods and Findings in Experimental and Clinical Pharmacology, vol. 24, supplement D, pp. 65–70, 2002.
[143]  A. P. J. Parker, A. Agathonikou, R. O. Robinson, and C. P. Panayiotopoulos, “Inappropriate use of carbamazepine and vigabatrin in typical absence seizures,” Developmental Medicine and Child Neurology, vol. 40, no. 8, pp. 517–519, 1998.
[144]  M. T. Yang, W. T. Lee, L. W. Chu, and Y. Z. Shen, “Anti-epileptic drugs-induced de novo absence seizures,” Brain and Development, vol. 25, no. 1, pp. 51–56, 2003.
[145]  P. Thomas, L. Valton, and P. Genton, “Absence and myoclonic status epilepticus precipitated by antiepileptic drugs in idiopathic generalized epilepsy,” Brain, vol. 129, no. 5, pp. 1281–1292, 2006.
[146]  B. M. Bouwman, P. L. C. van den Broek, G. van Luijtelaar, and C. M. van Rijn, “The effects of vigabatrin on type II spike wave discharges in rats,” Neuroscience Letters, vol. 338, no. 3, pp. 177–180, 2003.
[147]  M. E. Kelly and D. C. McIntyre, “Hippocampal kindling protects several structures from the neuronal damage resulting from kainic acid-induced status epilepticus,” Brain Research, vol. 634, no. 2, pp. 245–256, 1994.
[148]  A. Lüttjohann, P. F. Fabene, and G. van Luijtelaar, “A revised Racine's scale for PTZ-induced seizures in rats,” Physiology and Behavior, vol. 98, no. 5, pp. 579–586, 2009.
[149]  E. Maris, B. M. Bouwman, P. Suffczynski, and C. M. van Rijn, “Starting and stopping mechanisms of absence epileptic seizures are revealed by hazard functions,” Journal of Neuroscience Methods, vol. 152, no. 1-2, pp. 107–115, 2006.
[150]  Z. Liu, M. Vergnes, A. Depaulis, and C. Marescaux, “Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat,” Brain Research, vol. 545, no. 1-2, pp. 1–7, 1991.
[151]  C. M. van Rijn, E. W. Bree, J. F. R. de Miranda, J. M. H. Vossen, and A. M. L. Coenen, “Binding of RO 5-4864 to brain membranes of rats with and without absence-like phenomena,” Journal of Receptor Research, vol. 11, no. 5, pp. 721–725, 1991.
[152]  A. R. Knight and N. G. Bowery, “GABA receptors in rats with spontaneous generalized nonconvulsive epilepsy,” Journal of Neural Transmission, Supplementa, no. 35, pp. 189–196, 1992.
[153]  O. C. Snead III, A. Depaulis, P. K. Banerjee, V. Hechler, and M. Vergnes, “The receptor complex in experimental absence seizures in rat: an autoradiographic study,” Neuroscience Letters, vol. 140, no. 1, pp. 9–12, 1992.
[154]  F. Lin, Z. Cao, and D. A. Hosford, “Increased number of receptors in the lethargic (lh/lh) mouse model of absence epilepsy,” Brain Research, vol. 608, no. 1, pp. 101–106, 1993.
[155]  R. Spreafico, T. Mennini, L. Danober et al., “ receptor impairment in the genetic absence epilepsy rats from Strasbourg (GAERS): an immunocytochemical and receptor binding autoradiographic study,” Epilepsy Research, vol. 15, no. 3, pp. 229–238, 1993.
[156]  O. C. Snead III and C. C. Liu, “ receptor function in the γ-hydroxybutyrate model of generalized absence seizures,” Neuropharmacology, vol. 32, no. 4, pp. 401–409, 1993.
[157]  H. J. Luhmann, T. Mittmann, G. van Luijtelaar, and U. Heinemann, “Impairment of intracortical GABAergic inhibition in a rat model of absence epilepsy,” Epilepsy Research, vol. 22, no. 1, pp. 43–51, 1995.
[158]  N. G. Bowery, K. Parry, A. Boehrer, P. Mathivet, C. Marescaux, and R. Bernasconi, “Pertussis toxin decreases absence seizures and receptor binding in thalamus of a genetically prone rat (GAERS),” Neuropharmacology, vol. 38, no. 11, pp. 1691–1697, 1999.
[159]  I. G. Rebrov, M. N. Karpova, A. A. Andreev et al., “Chlorine conductance of the receptor of synaptoneurosomes from the brain cortex of WAG/Rij rats with absence epilepsy and Wistar rats at an early period in the development of nonconvulsive or tonic-clonic kindling,” Neurochemical Journal, vol. 1, no. 4, pp. 293–298, 2007.
[160]  T. Bessa?h, L. Bourgeais, C. I. Badiu et al., “Nucleus-specific abnormalities of GABAergic synaptic transmission in a genetic model of absence seizures,” Journal of Neurophysiology, vol. 96, no. 6, pp. 3074–3081, 2006.
[161]  M. G. Corda, M. Orlandi, D. Lecca, G. Carboni, V. Frau, and O. Giorgi, “Pentylenetetrazol-induced kindling in rats: effect of GABA function inhibitors,” Pharmacology Biochemistry and Behavior, vol. 40, no. 2, pp. 329–333, 1991.
[162]  M. G. Corda, M. Orlandi, D. Lecca, and O. Giorgi, “Decrease in gabaergic function induced by pentylenetetrazol kindling in rats: antagonism by MK-801,” Journal of Pharmacology and Experimental Therapeutics, vol. 262, no. 2, pp. 792–800, 1992.
[163]  M. N. G. Titulaer, W. Kamphuis, C. W. Pool, J. J. van Heerikhuize, and F. H. L. da Silva, “Kindling induces time-dependent and regional specific changes in the [3H]muscimol binding in the rat hippocampus: a quantitative autoradiographic study,” Neuroscience, vol. 59, no. 4, pp. 817–826, 1994.
[164]  M. N. G. Titulaer, W. Kamphuis, and F. H. L. da Silva, “Autoradiographic analysis of [35S]t-butylbicyclophosphorothionate binding in kindled rat hippocampus shows different changes in CA1 area and fascia dentata,” Neuroscience, vol. 66, no. 3, pp. 547–554, 1995.
[165]  A. S. Bazyan, V. V. Zhulin, M. N. Karpova, N. Y. Klishina, and R. N. Glebov, “Long-term reduction of benzodiazepine receptor density in the rat cerebellum by acute seizures and kindling and its recovery 6 months later by a pentylenetetrazole challenge,” Brain Research, vol. 888, no. 2, pp. 212–220, 2001.
[166]  M. C. Prevett, A. A. Lammertsma, D. J. Brooks, V. J. Cunningham, D. R. Fish, and J. S. Duncan, “Benzodiazepine- receptor binding during absence seizures,” Epilepsia, vol. 36, no. 6, pp. 592–599, 1995.
[167]  D. A. Richards, T. Lemos, P. S. Whitton, and N. G. Bowery, “Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study,” Journal of Neurochemistry, vol. 65, no. 4, pp. 1674–1680, 1995.
[168]  F. H. Li, Y. Wang, S. Lin, Z. Cao, and D. A. Hosford, “ receptor-mediated effects in synaptosomes of lethargic (lh/lh) mice,” Journal of Neurochemistry, vol. 65, no. 5, pp. 2087–2095, 1995.
[169]  S. J. Caddick and D. A. Hosford, “ -activated gK+ in thalamic neurons in the lethargic (lh/lh) mouse model of generalized absence seizures,” Neuroscience Letters, vol. 205, no. 1, pp. 29–32, 1996.
[170]  R. J. Sutch, C. C. Davies, and N. G. Bowery, “GABA release and uptake measured in crude synaptosomes from genetic absence epilepsy rats from strasbourg (GAERS),” Neurochemistry International, vol. 34, no. 5, pp. 415–425, 1999.
[171]  S. A. Chepurnov, N. E. Chepurnova, E. A. Tolmacheva, I. A. Kochetkov, E. L. van Luijtelaar, and A. M. Coenen, “Pregnancy in WAG/Rij rats—changes in the levels of progesterone, estradiol and generalized absence epilepsy,” Rossiiskii Fiziologicheskii Zhurnal Imeni I. M. Sechenova, vol. 88, no. 6, pp. 741–750, 2002.
[172]  E. A. Tolmacheva, S. A. Chepurnov, N. E. Chepurnova, Y. A. Kochetkov, and G. van Luijtelaar, “Absence seizures during pregnancy in WAG/Rij rats,” Physiology and Behavior, vol. 81, no. 4, pp. 623–627, 2004.
[173]  R. H. Wallace, C. Marini, S. Petrou et al., “Mutant receptor γ2-subunit in childhood absence epilepsy and febrile seizures,” Nature Genetics, vol. 28, no. 1, pp. 49–52, 2001.
[174]  J. Wu, K. Ellsworth, M. Ellsworth, K. M. Schroeder, K. Smith, and R. S. Fisher, “Abnormal benzodiazepine and zinc modulation of receptors in an acquired absence epilepsy model,” Brain Research, vol. 1013, no. 2, pp. 230–240, 2004.
[175]  M. Miettinen, E. Koivisto, P. Riekkinen, and R. Miettinen, “Coexistence of parvalbumin and GABA in nonpyramidal neurons of the rat entorhinal cortex,” Brain Research, vol. 706, no. 1, pp. 113–122, 1996.
[176]  M. R. Celio, “Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex,” Science, vol. 231, no. 4741, pp. 995–997, 1986.
[177]  Y. Kawaguchi and Y. Kubota, “GABAergic cell subtypes and their synaptic connections in rat frontal cortex,” Cerebral Cortex, vol. 7, no. 6, pp. 476–486, 1997.
[178]  M. C. van de Bovenkamp-Janssen, A. Korosi, J. G. Veening, W. J. J. M. Scheenen, E. L. J. M. van Luijtelaar, and E. W. Roubos, “Neuronal parvalbumin and absence epilepsy in WAG/Rij rats,” in The WAG/Rij Model for Absence Epilepsy: The Nijmegen-Russian Federation Papers, E. L. J. M. van Luijtelaar, G. D. Kuznetsova, S. A. Chepurnov, and A. M. L. Coenen, Eds., pp. 29–36, Nijmegen University Press, 2003.
[179]  A. S. Bazyan, “The determined and uncertain processes in the nervous system,” Neurochimia, vol. 23, no. 1, pp. 19–23, 2006.
[180]  J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain, Sinauer Associates, Sunderland, Mass, USA, 2001.
[181]  E. A. Barnard, P. Skolnick, R. W. Olsen et al., “International union of pharmacology. XV. Subtypes of γ-aminobutyric acid(A) receptors: classification on the basis of subunit structure and receptor function,” Pharmacological Reviews, vol. 50, no. 2, pp. 291–313, 1998.
[182]  R. W. Olsen and W. Sieghart, “International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit composition, pharmacology, and function. Update,” Pharmacological Reviews, vol. 60, no. 3, pp. 243–260, 2008.
[183]  E. A. Barnard, M. G. Darlison, and P. Seeburg, “Molecular biology of the GABAA receptor: the receptor/channel superfamily,” Trends in Neurosciences, vol. 10, no. 12, pp. 502–509, 1987.
[184]  F. A. Stephenson, “The receptors,” Biochemical Journal, vol. 310, no. 1, pp. 1–9, 1995.
[185]  J. L. Fisher, J. Zhang, and R. L. Macdonald, “The role of α1 and α6 subtype amino-terminal domains in allosteric regulation of γ-aminobutyric acid(a) receptors,” Molecular Pharmacology, vol. 52, no. 4, pp. 714–724, 1997.
[186]  S. A. Thompson, S. A. Arden, G. Marshall, P. B. Wingrove, P. J. Whiting, and K. A. Wafford, “Residues in transmembrane domains I and II determine γ-aminobutyric acid type A(A) receptor subtype-selective antagonism by furosemide,” Molecular Pharmacology, vol. 55, no. 6, pp. 993–999, 1999.
[187]  P. B. Wingrove, K. A. Wafford, C. Bain, and P. J. Whiting, “The modulatory action of loreclezole at the γ-aminobutyric acid type A receptor is determined by a single amino acid in the β2 and β3 subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 10, pp. 4569–4573, 1994.
[188]  A. Hunter, “Kava (Piper methysticum) back in circulation,” Australian Centre for Complementary Medicine, vol. 25, no. 7, article 529, 2006.
[189]  M. B. Herd, D. Belelli, and J. J. Lambert, “Neurosteroid modulation of synaptic and extrasynaptic receptors,” Pharmacology and Therapeutics, vol. 116, no. 1, pp. 20–34, 2007.
[190]  A. M. Hosie, M. E. Wilkins, H. M. A. da Silva, and T. G. Smart, “Endogenous neurosteroids regulate receptors through two discrete transmembrane sites,” Nature, vol. 444, no. 7118, pp. 486–489, 2006.
[191]  C. Braestrup, M. Nielsen, and T. Honore, “Binding of [3H]DMCM, a convulsive benzodiazepine ligand, to rat brain membranes: preliminary studies,” Journal of Neurochemistry, vol. 41, no. 2, pp. 454–465, 1983.
[192]  R. L. Macdonald, R. E. Twyman, T. Ryan-Jastrow, and T. P. Angelotti, “Regulation of receptor channels by anticonvulsant and convulsant drugs and by phosphorylation,” Epilepsy Research, Supplement, vol. 9, pp. 265–277, 1992.
[193]  P. Polc, E. P. Bonetti, R. Schaggner, and W. Haefely, “A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, β-carbolines, and phenobarbitone,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 321, no. 4, pp. 260–264, 1982.
[194]  J. P. Changeux and S. J. Edelstein, “Allosteric receptors after 30 years,” Neuron, vol. 21, no. 5, pp. 959–980, 1998.
[195]  T. P. Bonnert, R. M. Mckernan, S. Farrar et al., “θ, a novel γ-aminobutyric acid type A receptor subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9891–9896, 1999.
[196]  P. J. Whiting, G. McAllister, D. Vasilatis et al., “Neuronally restricted RNA splicing regulates the expression of a novel receptor subunit conferring atypical functional properties,” Journal of Neuroscience, vol. 17, no. 13, pp. 5027–5037, 1997.
[197]  P. Kofuji, J. B. Wang, S. J. Moss, R. L. Huganir, and D. R. Burt, “Generation of two forms of the γ-aminobutyric acid(A) receptor γ2-subunit in mice by alternative splicing,” Journal of Neurochemistry, vol. 56, no. 2, pp. 713–715, 1991.
[198]  P. Whiting, R. M. McKernan, and L. L. Iversen, “Another mechanism for creating diversity in γ-aminobutyrate type A receptors: RNA splicing directs expression of two forms of γ2 subunit, one of which contains a protein kinase C phosphorylation site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 24, pp. 9966–9970, 1990.
[199]  A. N. Bateson, A. Lasham, and M. G. Darlison, “γ-aminobutyric acid(A) receptor heterogeneity is increased by alternative splicing of a novel β-subunit gene transcript,” Journal of Neurochemistry, vol. 56, no. 4, pp. 1437–1440, 1991.
[200]  R. J. Harvey, M. A. Chinchetru, and M. G. Darlison, “Alternative splicing of a 51-nucleotide exon that encodes a putative protein kinase C phosphorylation site generates two forms of the chicken γ-aminobutyric acid(A) receptor β2 subunit,” Journal of Neurochemistry, vol. 62, no. 1, pp. 10–16, 1994.
[201]  E. F. Kirkness and C. M. Fraser, “A strong promoter element is located between alternative exons of a gene encoding the human γ-aminobutyric acid-type A receptor β3 subunit (GABRB3),” The Journal of Biological Chemistry, vol. 268, no. 6, pp. 4420–4428, 1993.
[202]  Y. Kim, H. Glatt, W. Xie, D. Sinnett, and M. Lalande, “Human γ-aminobutyric acid-type a receptor α5 subunit gene (GABRA5): characterization and structural organization of the 5' flanking region,” Genomics, vol. 42, no. 3, pp. 378–387, 1997.
[203]  E. R. Korpi, T. Kuner, P. Kristo et al., “Small N-terminal deletion by splicing in cerebellar α6 subunit abolishes receptor function,” Journal of Neurochemistry, vol. 63, no. 3, pp. 1167–1170, 1994.
[204]  T. C. Jacob, S. J. Moss, and R. Jurd, “ receptor trafficking and its role in the dynamic modulation of neuronal inhibition,” Nature Reviews Neuroscience, vol. 9, no. 5, pp. 331–343, 2008.
[205]  D. Benke and H. M?hler, “UNIT 1.16 benzodiazepine binding to receptors,” Current Protocols in Pharmacology, 2006.
[206]  H. Li, A. Kraus, J. Wu, J. R. Huguenard, and R. S. Fisher, “Selective changes in thalamic and cortical receptor subunits in a model of acquired absence epilepsy in the rat,” Neuropharmacology, vol. 51, no. 1, pp. 121–128, 2006.
[207]  H. Li, J. R. Huguenard, and R. S. Fisher, “Gender and age differences in expression of receptor subunits in rat somatosensory thalamus and cortex in an absence epilepsy model,” Neurobiology of Disease, vol. 25, no. 3, pp. 623–630, 2007.
[208]  C. M. Schofield, M. Kleiman-Weiner, U. Rudolph, and J. R. Huguenard, “A gain in receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 18, pp. 7630–7635, 2009.
[209]  P. K. Banerjee, N. J. K. Tillakaratne, S. Brailowsky, R. W. Olsen, A. J. Tobin, and O. C. Snead III, “Alterations in receptor α1 and α4 subunit mRNA levels in thalamic relay nuclei following absence-like seizures in rats,” Experimental Neurology, vol. 154, no. 1, pp. 213–223, 1998.
[210]  D. Merlo, C. Mollinari, Y. Inaba et al., “Reduced receptor subunit expression and paired-pulse depression in a genetic model of absence seizures,” Neurobiology of Disease, vol. 25, no. 3, pp. 631–641, 2007.
[211]  A. P. Princivalle, D. A. Richards, J. S. Duncan, R. Spreafico, and N. G. Bowery, “Modification of GABAB1 and GABAB2 receptor subunits in the somatosensory cerebral cortex and thalamus of rats with absence seizures (GAERS),” Epilepsy Research, vol. 55, no. 1-2, pp. 39–51, 2003.
[212]  R. L. Macdonald, J. Q. Kang, and M. J. Gallagher, “Mutations in receptor subunits associated with genetic epilepsies,” Journal of Physiology, vol. 588, no. 11, pp. 1861–1869, 2010.
[213]  P. Lachance-Touchette, C. Martin, C. Poulin, M. Gravel, L. Carmant, and P. Cossette, “Screening of GABRB3 in French-Canadian families with idiopathic generalized epilepsy,” Epilepsia, vol. 51, no. 9, pp. 1894–1897, 2010.
[214]  M. P. Goldschen-Ohm, D. A. Wagner, S. Petrou, and M. V. Jones, “An epilepsy-related region in the receptor mediates long-distance effects on GABA and benzodiazepine binding sites,” Molecular Pharmacology, vol. 77, no. 1, pp. 35–45, 2010.
[215]  J. Q. Kang, W. Shen, and R. L. Macdonald, “Two molecular pathways (NMD and ERAD) contribute to a genetic epilepsy associated with the receptor GABRA1 PTC mutation, 975delC, S326fs328X,” Journal of Neuroscience, vol. 29, no. 9, pp. 2833–2844, 2009.
[216]  M. Tanaka, R. W. Olsen, M. T. Medina et al., “Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy,” The American Journal of Human Genetics, vol. 82, no. 6, pp. 1249–1261, 2008.
[217]  A. Hempelmann, J. Cobilanschi, A. Heils et al., “Lack of evidence of an allelic association of a functional GABRB3 exon 1a promoter polymorphism with idiopathic generalized epilepsy,” Epilepsy Research, vol. 74, no. 1, pp. 28–32, 2007.
[218]  D. Audenaert, E. Schwartz, K. G. Claeys et al., “A novel GABRG2 mutation associated with febrile seizures,” Neurology, vol. 67, no. 4, pp. 687–690, 2006.
[219]  L. Urak, M. Feucht, N. Fathi, K. Hornik, and K. Fuchs, “A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity,” Human Molecular Genetics, vol. 15, no. 16, pp. 2533–2541, 2006.
[220]  S. Maljevic, K. Krampfl, J. Cobilanschi et al., “A mutation in the receptor α1-subunit is associated with absence epilepsy,” Annals of Neurology, vol. 59, no. 6, pp. 983–987, 2006.
[221]  M. Ito, I. Ohmori, T. Nakahori, M. Ouchida, and Y. Ohtsuka, “Mutation screen of GABRA1, GABRB2 and GABRG2 genes in Japanese patients with absence seizures,” Neuroscience Letters, vol. 383, no. 3, pp. 220–224, 2005.
[222]  C. Marini, L. A. Harkin, R. H. Wallace, J. C. Mulley, I. E. Scheffer, and S. F. Berkovic, “Childhood absence epilepsy and febrile seizures: a family with a receptor mutation,” Brain, vol. 126, part 1, pp. 230–240, 2003.
[223]  K. Everett, B. Chioza, J. Aicardi et al., “Linkage and mutational analysis of CLCN2 in childhood absence epilepsy,” Epilepsy Research, vol. 75, no. 2-3, pp. 145–153, 2007.
[224]  G. Frugier, F. Coussen, M. F. Giraud et al., “A γ2(R43Q) mutation, linked to epilepsy in humans, alters receptor assembly and modifies subunit composition on the cell surface,” The Journal of Biological Chemistry, vol. 282, no. 6, pp. 3819–3828, 2007.
[225]  H. L. Payne, P. S. Donoghue, W. M. K. Connelly et al., “Aberrant receptor expression in the dentate gyrus of the epileptic mutant mouse stargazer,” Journal of Neuroscience, vol. 26, no. 33, pp. 8600–8608, 2006.
[226]  J. Holter, J. Davies, N. Leresche, V. Crunelli, and D. A. Carter, “Identification of two further splice variants of GABABR1 characterizes the conserved micro-exon 4 as a hot spot for regulated splicing in the rat brain,” Journal of Molecular Neuroscience, vol. 26, no. 1, pp. 99–108, 2005.
[227]  B. Singh, A. Monteil, I. Bidaud et al., “Mutational analysis of CACNA1G in idiopathic generalized epilepsy,” Human mutation, vol. 28, no. 5, pp. 524–525, 2007.
[228]  H. S. Shin, “T-type Ca2+ channels and absence epilepsy,” Cell Calcium, vol. 40, no. 2, pp. 191–196, 2006.
[229]  J. B. Peloquin, H. Khosravani, W. Barr et al., “Functional analysis of Cav3.2 T-type calcium channel mutations linked to childhood absence epilepsy,” Epilepsia, vol. 47, no. 3, pp. 655–658, 2006.
[230]  J. J. Lü, Y. H. Zhang, Y. C. Chen et al., “T-type calcium channel gene-CACNA1H is a susceptibility gene to childhood absence epilepsy,” Zhonghua Er Ke Za Zhi, vol. 43, no. 2, pp. 133–136, 2005.
[231]  H. Khosravani, C. Altier, B. Simms et al., “Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy,” The Journal of Biological Chemistry, vol. 279, no. 11, pp. 9681–9684, 2004.
[232]  N. Hagiwara, H. Irisawa, and M. Kameyama, “Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells,” Journal of Physiology, vol. 395, pp. 233–253, 1988.
[233]  N. Hagiwara, H. Irisawa, H. Kasanuki, and S. Hosoda, “Background current in sino-atrial node cells of the rabbit heart,” Journal of Physiology, vol. 448, pp. 53–72, 1992.
[234]  E. L. J. M. van Luitelaar and A. M. L. Coenen, The WAG/Rij Model of Absence Epilepsy: Ten Years of Research. A Computation of Papers, Nijmegen University Press, Nijmegan. The Netherlands, 1997.
[235]  B. W. M. M. Peeters, C. M. van Rijn, E. L. J. M. van Luijtelaar, and A. M. L. Coenen, “Antiepileptic and behavioural actions of MK-801 in an animal model of spontaneous absence epilepsy,” Epilepsy Research, vol. 3, no. 2, pp. 178–181, 1989.
[236]  B. W. M. M. Peeters, C. M. Van Rijn, J. M. H. Vossen, and A. M. L. Coenen, “Involvement of NMDA receptors in non-convulsive epilepsy in WAG/Rij rats,” Life Sciences, vol. 47, no. 6, pp. 523–529, 1990.
[237]  E. L. J. M. van Luijtelaar and A. M. L. Coenen, “Effects of remacemide and its metabolic FPL 12495 on spike-wave discharges, electroencephalogram and behaviour in rats with absence epilepsy,” Neuropharmacology, vol. 34, no. 4, pp. 419–425, 1995.
[238]  B. W. M. M. Peeters, G. M. J. Ramakers, J. M. H. Vossen, and A. M. L. Coenen, “The WAG/Rij rat model for nonconvulsive absence epilepsy: Involvement of nonNMDA receptors,” Brain Research Bulletin, vol. 33, no. 6, pp. 709–713, 1994.
[239]  B. W. M. M. Peeters, G. M. J. Ramakers, B. A. Ellenbroek, J. M. H. Vossen, and A. M. L. Coenen, “Interactions between NMDA and nonNMDA receptors in nonconvulsive epilepsy in the WAG/Rij inbred strain,” Brain Research Bulletin, vol. 33, no. 6, pp. 715–718, 1994.
[240]  G. M. J. Ramakers, B. W. M. M. Peeters, J. M. H. Vossen, and A. M. L. Coenen, “CNQX, a new non-NMDA receptor antagonist, reduces spike wave discharges in the WAG/Rij rat model of absence epilepsy,” Epilepsy Research, vol. 9, no. 2, pp. 127–131, 1991.
[241]  J. R. Hughes, “Absence seizures: a review of recent reports with new concepts,” Epilepsy and Behavior, vol. 15, no. 4, pp. 404–412, 2009.
[242]  C. M. van Rijn, E. W. A. W. Banningh, and A. M. L. Coenen, “Effects of lamotrigine on absence seizures in rats,” Polish Journal of Pharmacology, vol. 46, no. 5, pp. 467–470, 1994.
[243]  T. A. Glauser, A. Cnaan, S. Shinnar et al., “Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy,” The New England Journal of Medicine, vol. 362, no. 9, pp. 790–799, 2010.
[244]  E. Russo, R. Citraro, S. D. Fazio et al., “Enhancement of anti-absence effects of ethosuximide by low doses of a noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist in a genetic animal model of absence epilepsy,” Epilepsy and Behavior, vol. 13, no. 2, pp. 295–299, 2008.
[245]  I. S. Midzyanovskaya, D. V. Salonin, D. Y. Bosnyakova, G. D. Kuznetsova, and E. L. J. M. van Luijtelaar, “The multiple effects of ketamine on electroencephalographic activity and behavior in WAG/Rij rats,” Pharmacology Biochemistry and Behavior, vol. 79, no. 1, pp. 83–91, 2004.
[246]  R. Jakus, M. Graf, R. D. Ando et al., “Effect of two noncompetitive AMPA receptor antagonists GYKI 52466 and GYKI 53405 on vigilance, behavior and spike-wave discharges in a genetic rat model of absence epilepsy,” Brain Research, vol. 1008, no. 2, pp. 236–244, 2004.
[247]  P. J. Conn and J. P. Pin, “Pharmacology and functions of metabotropic glutamate receptors,” Annual Review of Pharmacology and Toxicology, vol. 37, pp. 205–237, 1997.
[248]  R. T. Ngomba, I. Santolini, F. Biagioni et al., “Protective role for type-1 metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy,” Neuropharmacology, vol. 60, no. 7-8, pp. 1281–1291, 2011.
[249]  R. T. Ngomba, I. Santolini, T. E. Salt et al., “Metabotropic glutamate receptors in the thalamocortical network: Strategic targets for the treatment of absence epilepsy,” Epilepsia, vol. 52, no. 7, pp. 1211–1222, 2011.
[250]  E. Hermans and R. A. J. Challiss, “Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors,” Biochemical Journal, vol. 359, no. 3, pp. 465–484, 2001.
[251]  F. Ferraguti and R. Shigemoto, “Metabotropic glutamate receptors,” Cell and Tissue Research, vol. 326, no. 2, pp. 483–504, 2006.
[252]  V. D'Amore, I. Santolini, C. M. van Rijn et al., “Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats,” Neuropharmacology, vol. 66, pp. 330–338, 2013.
[253]  A. G. Chapman, P. K. Yip, J. S. Yap et al., “Anticonvulsant actions of LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid),” European Journal of Pharmacology, vol. 368, no. 1, pp. 17–24, 1999.
[254]  R. T. Ngomba, F. Biagioni, S. Casciato et al., “The preferential mGlu2/3 receptor antagonist, LY341495, reduces the frequency of spike-wave discharges in the WAG/Rij rat model of absence epilepsy,” Neuropharmacology, vol. 49, pp. 89–103, 2005.
[255]  T. E. Salt and S. A. Eaton, “Distinct presynaptic metabotropic receptors for L-AP4 and CCG1 on GABAergic terminals: pharmacological evidence using novel α-methyl derivative mGluR antagonists, MAP4 and MCCG, in the rat thalamus in vivo,” Neuroscience, vol. 65, no. 1, pp. 5–13, 1995.
[256]  T. E. Salt and J. P. Turner, “Antagonism of the presumed presynaptic action of L-AP4 on GABAergic transmission in the ventrobasal thalamus by the novel mGluR antagonist MPPG,” Neuropharmacology, vol. 35, no. 2, pp. 239–241, 1996.
[257]  J. P. Turner and T. E. Salt, “Group II and III metabotropic glutamate receptors and the control of the nucleus reticularis thalami input to rat thalamocortical neurones in vitro,” Neuroscience, vol. 122, no. 2, pp. 459–469, 2003.
[258]  J. P. Turner and T. E. Salt, “Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro,” Journal of Physiology, vol. 519, no. 2, pp. 481–491, 1999.
[259]  R. T. Ngomba, F. Ferraguti, A. Badura et al., “Positive allosteric modulation of metabotropic glutamate 4 (mGlu4) receptors enhances spontaneous and evoked absence seizures,” Neuropharmacology, vol. 54, no. 2, pp. 344–354, 2008.
[260]  C. Izzi, A. Barbon, M. R. Toliat et al., “Candidate gene analysis of the human metabotropic glutamate receptor type 4 (GRM4) in patients with juvenile myoclonic epilepsy,” The American Journal of Medical Genetics—Neuropsychiatric Genetics, vol. 123, no. 1, pp. 59–63, 2003.
[261]  C. T. Wong, S. W. Scherer, O. C. Snead III, and D. R. Hampson, “Localization of the human mGluR4 gene within an epilepsy susceptibility locus,” Molecular Brain Research, vol. 87, no. 1, pp. 109–116, 2001.
[262]  F. Bertaso, C. Zhang, A. Scheschonka et al., “PICK1 uncoupling from mGluR7a causes absence-like seizures,” Nature Neuroscience, vol. 11, no. 8, pp. 940–948, 2008.
[263]  C. S. Zhang, F. Bertaso, V. Eulenburg et al., “Knock-in mice lacking the PDZ-ligand motif of mGluR7a show impaired PKC-dependent autoinhibition of glutamate release, spatial working memory deficits, and increased susceptibility to pentylenetetrazol,” Journal of Neuroscience, vol. 28, no. 34, pp. 8604–8614, 2008.
[264]  G. D'Arcangelo, M. D'Antuono, V. Tancredi, and M. Avoli, “Neocortical hyperexcitability in a genetic model of absence seizures and its reduction by levetiracetam,” Epilepsia, vol. 47, no. 7, pp. 1144–1152, 2006.
[265]  N. M. Lorenzon and R. C. Foehring, “Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons,” Journal of Neurophysiology, vol. 67, no. 2, pp. 350–363, 1992.
[266]  S. W. Kuffler and J. G. Nicholls, From Neuron to Brain, Sinauer Associates, Sunderland, Mass, USA, 1987.
[267]  R. H. Roth, M. E. Wolf, and A. Y. Deutch, “Neurochemisry of midbrain dopamine system,” in Psychopharmacology the Third Generation of Progress, H. Y. Meltzer, Ed., chapter 9, pp. 81–98, Raven Press, New York, NY, USA, 1987.
[268]  R. H. Roth and J. D. Elsworth, “Biochemical pharmacology of midbrain dopamine neurons,” in Psychopharmacology: The Fourth Generation of Progress, F. E. Bloom and D. J. Kupfer, Eds., chapter 21, pp. 227–243, Raven Press, New York, NY, USA, 1995.
[269]  A. Bj?rklund and S. B. Dunnett, “Dopamine neuron systems in the brain: an update,” Trends in Neurosciences, vol. 30, no. 5, pp. 194–202, 2007.
[270]  K. J. Watling, The Sigma-RBI Handbook of Receptor Classification and Signal Transduction, Sigma-Aldrich, 2006.
[271]  S. P. H. Alexander, A. Mathie, and J. A. Peters, “Guide to receptors and channels (GRAC), 5th edition,” The British Journal of Pharmacology, vol. 164, supplement 1, pp. S1–S324, 2011.
[272]  P. Greengard, P. B. Allen, and A. C. Nairn, “Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade,” Neuron, vol. 23, no. 3, pp. 435–447, 1999.
[273]  P. Calabresi, B. Picconi, A. Tozzi, and M. Di Filippo, “Dopamine-mediated regulation of corticostriatal synaptic plasticity,” Trends in Neurosciences, vol. 30, no. 5, pp. 211–219, 2007.
[274]  J. Lester, S. Fink, N. Aronin, and M. DiFiglia, “Colocalization of D1 and D2 dopamine receptor mRNAs in striatal neurons,” Brain Research, vol. 621, no. 1, pp. 106–110, 1993.
[275]  C. A. Tamminga and A. Carlsson, “Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis,” Current Drug Targets—CNS & Neurological Disorders, vol. 1, no. 2, pp. 141–147, 2002.
[276]  E. N. Pothos, “Regulation of dopamine quantal size in midbrain and hippocampal neurons,” Behavioural Brain Research, vol. 130, no. 1-2, pp. 203–207, 2002.
[277]  A. S. Bazyan, V. M. Getsova, and N. V. Orlova, “Haloperidol catalepsy consolidation in the rat as a model of neuromodulatory integration,” Neuroscience, vol. 99, no. 2, pp. 279–288, 2000.
[278]  R. R. Gainetdinov, T. D. Sotnikova, T. V. Grekhova, and K. S. Rayevsky, “In vivo evidence for preferential role of dopamine D3 receptor in the presynaptic regulation of dopamine release but not synthesis,” European Journal of Pharmacology, vol. 308, no. 3, pp. 261–269, 1996.
[279]  J. W. Mink, “The basal ganglia,” in Fundamental Neuroscience, L. R. Scuire, F. T. Bloom, S. C. McConnell, J. L. Roberts, N. C. Spitzer, and M. J. Zigmond, Eds., pp. 815–839, Elsevier Science/Academic Press, 2nd edition, 2003.
[280]  A. S. Bazyan, G. A. Grigoryan, and M. E. Joffe, “Regulation of motor behaviour,” Uspekhi Fizicheskikh Nauk, vol. 42, no. 3, pp. 65–80, 2011.
[281]  O. Hikosaka, Y. Takikawa, and R. Kawagoe, “Role of the basal ganglia in the control of purposive saccadic eye movements,” Physiological Reviews, vol. 80, no. 3, pp. 953–978, 2000.
[282]  Y. Smith, M. D. Bevan, E. Shink, and J. P. Bolam, “Microcircuitry of the direct and indirect pathways of the basal ganglia,” Neuroscience, vol. 86, no. 2, pp. 353–387, 1998.
[283]  J. Olds and P. Milner, “Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain,” Journal of Comparative and Physiological Psychology, vol. 47, no. 6, pp. 419–427, 1954.
[284]  P. D. Shabanov and A. A. Lebedev, “Participation of GABA- and dopaminergic mechanisms of the bed nucleus of stria terminalis in reinforcing effects of psychotropic drugs mediated via the lateral hypothalamus,” Rossi?skii Fiziologicheski? Zhurnal Imeni I. M. Sechenova, vol. 97, no. 8, pp. 804–813, 2011.
[285]  P. D. Shabanov, A. A. Lebedev, A. V. Liubimov, and V. A. Kornilov, “Significance of CRF and dopamine receptors in amygdala for reinforcing effects of opiates and opioids on self-stimulation of lateral hypothalamus in rats,” Eksperimental'naia i Klinicheskaia Farmakologiia, vol. 74, no. 1, pp. 3–8, 2011.
[286]  P. Redgrave, “Modulation of intracranial self-stimulation behaviour by local perfusions of dopamine, noradrenaline and serotonin within the caudate nucleus and nucleus accumbens,” Brain Research, vol. 155, no. 2, pp. 277–295, 1978.
[287]  D. J. Hayes, J. Hoang, and A. J. Greenshaw, “The role of nucleus accumbens shell GABA receptors on ventral tegmental area intracranial self-stimulation and a potential role for the 5-HT2C receptor,” Journal of Psychopharmacology, vol. 25, no. 12, pp. 1661–1675, 2011.
[288]  F. Mora, D. B. Avrith, and E. T. Rolls, “An electrophysiological and behavioural study of self-stimulation in the orbitofrontal cortex of the rhesus monkey,” Brain Research Bulletin, vol. 5, no. 2, pp. 111–115, 1980.
[289]  F. Mora, F. Vives, and F. Alba, “Evidence for an involvement of acetylcholine in self-stimulation of the prefrontal cortex in the rat,” Experientia, vol. 36, no. 10, pp. 1180–1181, 1980.
[290]  A. G. Phillips, F. Mora, and E. T. Rolls, “Intracerebral self-administration of amphetamine by rhesus monkeys,” Neuroscience Letters, vol. 24, no. 1, pp. 81–86, 1981.
[291]  F. Mora and J. M. R. Ferrer, “Neurotransmitters, pathways and circuits as the neural substrates of self-stimulation of the prefrontal cortex: facts and speculations,” Behavioural Brain Research, vol. 22, no. 2, pp. 127–140, 1986.
[292]  K. L. Thomas and B. J. Everitt, “Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: a cellular imaging study with γ protein kinase C expression,” Journal of Neuroscience, vol. 21, no. 7, pp. 2526–2535, 2001.
[293]  J. M. Allman, A. Hakeem, J. M. Erwin, E. Nimchinsky, and P. Hof, “The anterior cingulate cortex: the evolution of an interface between emotion and cognition,” Annals of the New York Academy of Sciences, vol. 935, pp. 107–117, 2001.
[294]  K. C. Berridge and M. L. Kringelbach, “Affective neuroscience of pleasure: reward in humans and animals,” Psychopharmacology, vol. 199, no. 3, pp. 457–480, 2008.
[295]  T. Sharot, T. Shiner, A. C. Brown, J. Fan, and R. J. Dolan, “Dopamine enhances expectation of pleasure in humans,” Current Biology, vol. 19, no. 24, pp. 2077–2080, 2009.
[296]  K. S. Smith, K. C. Berridge, and J. W. Aldridge, “Disentangling pleasure from incentive salience and learning signals in brain reward circuitry,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 27, pp. E255–E264, 2011.
[297]  L. M. McClusky, “On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context,” Nurse Education Today, vol. 32, no. 1, pp. 101–104, 2012.
[298]  J. E. Robinson, E. W. Fish, M. C. Krouse, A. Thorsell, M. Heilig, and C. J. Malanga, “Potentiation of brain stimulation reward by morphine: effects of neurokinin-1 receptor antagonism,” Psychopharmacology, vol. 220, no. 1, pp. 215–224, 2012.
[299]  A. S. Bazyan, “The mechanisms of neuromodulatory integration actualized the emotional and motivation states,” Neurochimia, vol. 16, no. 2, pp. 88–103, 1999.
[300]  S. E. Hemby, G. H. Jones, D. B. Neill, and J. B. Justice Jr., “6-Hydroxydopamine lesions of the medial prefrontal cortex fail to influence cocaine-induced place conditioning,” Behavioural Brain Research, vol. 49, no. 2, pp. 225–230, 1992.
[301]  G. A. Higgins, P. Nguyen, and E. M. Sellers, “Morphine place conditioning is differentially affected by CCK(A) and CCK(B) receptor antagonists,” Brain Research, vol. 572, no. 1-2, pp. 208–215, 1992.
[302]  A. S. Bazyan and G. A. Grigoryan, “Molecular-chemical basis of emotional states and reinforcement,” Uspekhi Fiziologicheskikh Nauk, vol. 37, no. 1, pp. 78–83, 2006.
[303]  S. R. Bradley, M. J. Marino, M. Wittmann et al., “Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata,” Journal of Neuroscience, vol. 20, no. 9, pp. 3085–3094, 2000.
[304]  C. Deransart, V. Riban, B. T. Lê, C. Marescaux, and A. Depaulis, “Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat,” Neuroscience, vol. 100, no. 2, pp. 335–344, 2000.
[305]  W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599, 1997.
[306]  W. Schultz, “Predictive reward signal of dopamine neurons,” Journal of Neurophysiology, vol. 80, no. 1, pp. 1–27, 1998.
[307]  W. Schultz and A. Dickinson, “Neuronal coding of prediction errors,” Annual Review of Neuroscience, vol. 23, pp. 473–500, 2000.
[308]  I. S. Midzianovskaya, “Haloperidol induces changes in the electroencephalogram of rats with genetic absence epilepsy,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova, vol. 48, no. 6, pp. 1111–1114, 1998.
[309]  I. S. Midzianovskaia, “Two types of “spike-wave” discharges in the electrocorticogram of WAG/Rij rats, the genetic model of absence epilepsy,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova, vol. 49, no. 5, pp. 855–859, 1999.
[310]  N. M. W. J. de Bruin, E. L. J. M. van Luijtelaar, A. R. Cools, and B. A. Ellenbroek, “Dopamine characteristics in rat genotypes with distinct susceptibility to epileptic activity: apomorphine-induced stereotyped gnawing and novelty/amphetamine-induced locomotor stimulation,” Behavioural Pharmacology, vol. 12, no. 6-7, pp. 517–525, 2001.
[311]  K. Y. Sarkisova, M. A. Kulikov, I. S. Mydzyanovskaya, and A. A. Folomkina, “Dopamine-dependent character of depressive-like behavior in WAG/Rij rats with genetic absence epilepsy,” Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I. P. Pavlova, vol. 57, no. 1, pp. 91–102, 2007.
[312]  G. D. Kuznetsova, E. V. Petrova, A. M. L. Coenen, and E. L. J. M. van Luijtelaar, “Generalized absence epilepsy and catalepsy in rats,” Physiology and Behavior, vol. 60, no. 4, pp. 1165–1169, 1996.
[313]  A. R. Cools, R. Brachten, D. Heeren, A. Willemen, and B. Ellenbroek, “Search after neurobiological profile of individual-specific features of Wistar rats,” Brain Research Bulletin, vol. 24, no. 1, pp. 49–69, 1990.
[314]  A. R. Cools, B. A. Ellenbroek, M. A. Gingras, A. Engbersen, and D. Heeren, “Differences in vulnerability and susceptibility to dexamphetamine in Nijmegen high and low responders to novelty: a dose-effect analysis of spatio-temporal programming of behaviour,” Psychopharmacology, vol. 132, no. 2, pp. 181–187, 1997.
[315]  B. A. Ellenbroek, F. Sluyter, and A. R. Cools, “The role of genetic and early environmental factors in determining apomorphine susceptibility,” Psychopharmacology, vol. 148, no. 2, pp. 124–131, 2000.
[316]  A. G. Marshall, Biophysical Chemistry, John Wiley & Sons, New York, NY, USA, 1978.
[317]  T. Momiyama and E. Koga, “Dopamine D2-like receptors selectively block N-type Ca2+ channels to reduce GABA release onto rat striatal cholinergic interneurones,” Journal of Physiology, vol. 533, part 2, pp. 479–492, 2001.
[318]  A. J. Cooper and I. M. Stanford, “Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal IPSCs in vitro,” Neuropharmacology, vol. 41, no. 1, pp. 62–71, 2001.
[319]  B. Dean, T. Hussain, E. Scarr, G. Pavey, and D. L. Copolov, “Extended treatment with typical and atypical antipsychotic drugs: differential effects on the densities of dopamine D2-like and receptors in rat striatum,” Life Sciences, vol. 69, no. 11, pp. 1257–1268, 2001.
[320]  R. M. Shin, M. Masuda, M. Miura et al., “Dopamine D4 receptor-induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons,” Journal of Neuroscience, vol. 23, no. 37, pp. 11662–11672, 2003.
[321]  J. J. An, M. H. Bae, S. R. Cho et al., “Altered GABAergic neurotransmission in mice lacking dopamine D2 receptors,” Molecular and Cellular Neuroscience, vol. 25, no. 4, pp. 732–741, 2004.
[322]  D. Centonze, P. Gubellini, A. Usiello et al., “Differential contribution of dopamine D2S and D2L receptors in the modulation of glutamate and GABA transmission in the striatum,” Neuroscience, vol. 129, no. 1, pp. 157–166, 2004.
[323]  I. Silva, H. Cortes, E. Escartín et al., “L-DOPA inhibits depolarization-induced [3H]GABA release in the dopamine-denervated globus pallidus of the rat: the effect is dopamine independent and mediated by D2-like receptors,” Journal of Neural Transmission, vol. 113, no. 12, pp. 1847–1853, 2006.
[324]  Y. Qu, N. R. Swerdlow, M. Weber, D. Stouffer, and L. H. Parsons, “Quinelorane, a dopamine D3/D2 receptor agonist, reduces prepulse inhibition of startle and ventral pallidal GABA efflux: time course studies,” Pharmacology Biochemistry and Behavior, vol. 90, no. 4, pp. 686–690, 2008.
[325]  J. Acosta-García, N. Hernández-Chan, F. Paz-Bermúdez et al., “D4 and D1 dopamine receptors modulate [3H]GABA release in the substantia nigra pars reticulata of the rat,” Neuropharmacology, vol. 57, no. 7-8, pp. 725–730, 2009.
[326]  D. Gasca-Martinez, A. Hernandez, A. Sierra et al., “Dopamine inhibits GABA transmission from the globus pallidus to the thalamic reticular nucleus via presynaptic D4 receptors,” Neuroscience, vol. 169, no. 4, pp. 1672–1681, 2010.
[327]  G. Govindaiah, T. Wang, M. U. Gillette, S. R. Crandall, and C. L. Cox, “Regulation of inhibitory synapses by presynaptic D4 dopamine receptors in thalamus,” Journal of Neurophysiology, vol. 104, no. 5, pp. 2757–2765, 2010.
[328]  A. S. Bazyan, N. V. Orlova, and V. M. Getsova, “Characterisation of learning and memory in the WAG/Rij rats prone to absence epilepsy,” in The WAG/Rij Rats Model of Absence Epilepsy: The Nijmegen—Moscow Research, G. D. Kuznetsova, A. M. L. Coenen, S. A. Chepurnov, and E. L. J. M. van Luijtelaar, Eds., pp. 99–104, Nijmegen University Press, Nijmegen, The Netherlands, 2000.
[329]  K. Y. Sarkisova and M. A. Kulikov, “WAG/Rij rats: a new genetically—based model of depression,” in The WAG/Rij Rats Model of Absence Epilepsy: The Nijmegen—Moscow Research, G. D. Kuznetsova, A. Coenen, S. A. Chepurnov, and E. L. J. M. van Luijtelar, Eds., pp. 105–112, Nijmegen University Press, Nijmegen, The Netherlands, 2000.
[330]  Y. V. Dobryakova, V. A. Dubynin, and G. van Luijtelaar, “Maternal behavior in a genetic animal model of absence epilepsy,” Acta Neurobiologiae Experimentalis, vol. 68, no. 4, pp. 502–508, 2008.
[331]  Y. V. Dobryakova, V. A. Dubynin, and G. van Luijtelaar, “The effect of haloperidol on maternal behavior in WAG/Rij rats and its consequences in the offspring,” Acta Neurobiologiae Experimentalis, vol. 71, no. 3, pp. 339–347, 2011.
[332]  V. M. Getsova, N. V. Orlova, A. A. Folomkina, and A. S. Bazian, “Low dose of disulfiram and l-dopa evoked synergistic modification in behavior of Wistar and WAG/Rij rats,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova, vol. 53, no. 5, pp. 656–662, 2003.
[333]  V. M. Getsova, N. V. Orlova, A. A. Folomkina, and A. S. Bazyan, “The behavioural correlates of dopamine deficit by WAG/Rij rats strain,” in The WAG/Rij Model of Absence Epilepsy: The Nijmegan—Russian Federation Papers, G. van Luijtelar, G. D. Kuznetsova, A. Coenen, and S. A. Chepurnov, Eds., pp. 293–304, Nijmegan Institute for Cognition and Information, Nijmegen, The Netherlands, 2004.
[334]  R. I. Kruglikov, V. M. Getsova, N. V. Orlova, A. A. Lushkin, and I. R. Feshchenko, “Monoamine changes in the brain: influence on reaction of emotional resonance,” Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I. P. Pavlova, vol. 45, no. 3, pp. 551–557, 1995.
[335]  A. S. Bazyan, I. S. Midzianovskaya, G. D. Kuznetsova et al., “Possible mechanisms of WAG/Rij rats strain typological behavior actualization,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova, vol. 51, no. 6, pp. 720–727, 2001.
[336]  R. A. Wise, “Catecholamine theories of reward: a critical review,” Brain Research, vol. 152, no. 2, pp. 215–247, 1978.
[337]  R. A. Wise, “Dopamine and reward: the anhedonia hypothesis 30 years on,” Neurotoxicity Research, vol. 14, no. 2-3, pp. 169–183, 2008.
[338]  R. A. Wise, “Roles for nigrosriatal-not just mesocorticolimbic-dopamine in reward and addiction,” Trends in Neurosciences, vol. 32, no. 10, pp. 517–524, 2009.
[339]  M. H. Joseph, K. Datla, and A. M. J. Young, “The interpretation of the measurement of nucleus accumbens dopamine by in vivo dialysis: the kick, the craving or the cognition?” Neuroscience and Biobehavioral Reviews, vol. 27, no. 6, pp. 527–541, 2003.
[340]  W. Schultz, “Behavioral dopamine signals,” Trends in Neurosciences, vol. 30, no. 5, pp. 203–210, 2007.
[341]  T. Aosaki, H. Tsubokawa, A. Ishida, K. Watanabe, A. M. Graybiel, and M. Kimura, “Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning,” Journal of Neuroscience, vol. 14, no. 6, pp. 3969–3984, 1994.
[342]  S. Jacques, “Brain stimulation and reward: “pleasure centers” after twenty-five years,” Neurosurgery, vol. 5, no. 2, pp. 277–283, 1979.
[343]  B. G. Hoebel, “Brain neurotransmitters in food and drug reward,” The American Journal of Clinical Nutrition, vol. 42, no. 5, pp. 1133–1150, 1985.
[344]  P. Shizgal, “Toward a cellular analysis of intracranial self-stimulation: contributions of collision studies,” Neuroscience and Biobehavioral Reviews, vol. 13, no. 2-3, pp. 81–90, 1989.
[345]  A. Robertson, “Multiple reward systems and the prefrontal cortex,” Neuroscience and Biobehavioral Reviews, vol. 13, no. 2-3, pp. 163–170, 1989.
[346]  A. G. Phillips, C. D. Blaha, and H. C. Fibiger, “Neurochemical correlates of brain-stimulation reward measured by ex vivo and in vivo analyses,” Neuroscience and Biobehavioral Reviews, vol. 13, no. 2-3, pp. 99–104, 1989.
[347]  G. J. Schaefer and R. P. Michael, “Schedule-controlled brain self-stimulation: has it utility for behavioral pharmacology?” Neuroscience and Biobehavioral Reviews, vol. 16, no. 4, pp. 569–583, 1992.
[348]  G. Di Chiara, “The role of dopamine in drug abuse viewed from the perspective of its role in motivation,” Drug and Alcohol Dependence, vol. 38, no. 2, pp. 95–137, 1995.
[349]  S. Nakajima, “Biochemical mechanism of reinforcement: findings in the studies of self-stimulation,” Shinrigaku Kenkyu, vol. 66, no. 6, pp. 449–456, 1996.
[350]  S. Ikemoto and J. Panksepp, “The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking,” Brain Research Reviews, vol. 31, no. 1, pp. 6–41, 1999.
[351]  W. Lason, B. Przewlocka, A. Coenen, R. Przewlock, and G. van Luijtelaar, “Effects of μ and δ opioid receptor agonists and antagonists on absence epilepsy in WAG/Rij rats,” Neuropharmacology, vol. 33, no. 2, pp. 161–166, 1994.
[352]  W. Lason, B. Przewlocka, A. M. L. Coenen, R. Przewlocki, and E. L. J. M. van Luijtelaar, “The role of opioid system in absence epilepsy in rats,” in Typical Absences and Related Epileptic Syndromes, J. S. Duncan and C. P. Panayiotupolos, Eds., pp. 161–166, Churchill Communications Europe, London, UK, 1995.
[353]  B. Przew?ocka, W. Lasoń, H. Machelska, G. van Luijtelaar, A. Coenen, and R. Przew?ocki, “Kappa opioid receptor agonists suppress absence seizures in WAG/Rij rats,” Neuroscience Letters, vol. 186, no. 2-3, pp. 131–134, 1995.
[354]  W. Lason, B. Przewlocka, R. Przewlocki, A. M. L. Coenen, and E. L. J. M. van Luijtelaar, “The role of opioid mechanisms in non-convulsive seizures in WAG/Rij rats,” in New Leads in Opioid Research, J. M. van Ree, A. H. Mulder, V. M. Weigamt, and T. van Wimersma Greidanus, Eds., pp. 350–352, Excerpta Medica, Amsterdam, The Netherlands, 1990.
[355]  W. Lason, B. Przewlocka, E. L. J. M. van Luijtelaar, A. M. L. Coenen, and R. Przewlocki, “Endogenous opioid peptides in brain and pituitary of rats with absence epilepsy,” Neuropeptides, vol. 21, no. 3, pp. 147–152, 1992.
[356]  W. Lasoń, B. Przew?ocka, G. van Luijtelaar, and A. Coenen, “Proenkephalin and prodynorphin mRNA level in brain of rats with absence epilepsy,” Neuropeptides, vol. 27, no. 6, pp. 343–347, 1994.
[357]  G. Baranauskas and A. Nistri, “Sensitization of pain pathways in the spinal cord: cellular mechanisms,” Progress in Neurobiology, vol. 54, no. 3, pp. 349–365, 1998.
[358]  A. S. Bazian, N. V. Orlova, and V. M. Getsova, “Modulation of the activity of monoaminergic brain systems and emotional condition by dalargin in rats during development of emotional resonance response,” Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I.P. Pavlova, vol. 50, no. 3, pp. 500–508, 2000.
[359]  N. Altier and J. Stewart, “Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine,” Journal of Pharmacology and Experimental Therapeutics, vol. 285, no. 1, pp. 208–215, 1998.
[360]  N. Altier and J. Stewart, “The role of dopamine in the nucleus accumbens in analgesia,” Life Sciences, vol. 65, no. 22, pp. 2269–2287, 1999.
[361]  E. J. Calabrese, “Dopamine: biphasic dose responses,” Critical Reviews in Toxicology, vol. 31, no. 4-5, pp. 563–583, 2001.
[362]  C. Suaudeau and J. Costentin, “Analgesic effect of the direct D2 dopamine receptor agonist RU 24926 and cross tolerance with morphine,” Fundamental and Clinical Pharmacology, vol. 9, no. 2, pp. 147–152, 1995.
[363]  C. D. Cook, A. C. Barrett, C. Syvanthong, and M. J. Picker, “Modulatory effects of dopamine D3/2 agonists on kappa opioid-induced antinociception and diuresis in the rat,” Psychopharmacology, vol. 152, no. 1, pp. 14–23, 2000.
[364]  J. E. Magnusson and K. Fisher, “The involvement of dopamine in nociception: the role of D1 and D2 receptors in the dorsolateral striatum,” Brain Research, vol. 855, no. 2, pp. 260–266, 2000.
[365]  X. Gao, Y. Q. Zhang, and G. C. Wu, “Effects of dopaminergic agents on carrageenan hyperalgesia after intrathecal administration to rats,” European Journal of Pharmacology, vol. 418, no. 1-2, pp. 73–77, 2001.
[366]  N. A. Trekova, L. A. Vetrilé, L. A. Basharova, O. I. Mikovskaya, and T. G. Khlopushina, “Anti-dopamine antibodies: effects on behavior in an “open field,” pain sensitivity, CNS monoamine content, and functional activity of immunocytes in C57Bl/6 mice,” Neuroscience and Behavioral Physiology, vol. 31, no. 1, pp. 7–13, 2001.
[367]  E. L. J. M. van Luijtelaar, R. Dirksen, T. B. Vree, and F. van Haaren, “Effects of acute and chronic cocaine administration on EEG and behaviour in intact and castrated male and intact and ovariectomized female rats,” Brain Research Bulletin, vol. 40, no. 1, pp. 43–50, 1996.
[368]  J. Glowinski, “Regulation of synthesis and release processes in central catecholaminergic neuron,” in Metabolic Components and Neurotransmitters Relation of Brain Structure and Function, pp. 187–203, Pergamon Press, New York, NY, USA, 1975.
[369]  N. Weiner, F. L. Lee, E. Dreyer, and E. Barnes, “The activation of tyrosine hydroxylase in noradrenergic neurons during acute nerve stimulation,” Life Sciences, vol. 22, no. 13–15, pp. 1197–1216, 1978.
[370]  B. Nikodejevic, S. Senoh, J. W. Daly, and C. R. Creveling, “Catechol-O-methyltransferase. II. A new class of inhibitors of catechol-o-methyltransferase; 3,5-dihydroxy-4-methoxybenzoic acid and related compounds,” Journal of Pharmacology and Experimental Therapeutics, vol. 174, no. 1, pp. 83–93, 1970.
[371]  E. Costa and M. Sandler, Monoamine Oxidase: New Vistas, Raven Press, New York, NY, USA, 1972.
[372]  R. J. Ziance, K. Moxley, M. Mullis, and W. Gray, “Influence of MAO inhibitors on uptake and release of norepinephrine in rat brain in vitro,” Archives Internationales de Pharmacodynamie et de Therapie, vol. 228, no. 1, pp. 30–38, 1977.
[373]  G. A. R. Johnston, “Transmitter inactivating processes,” Proceedings of the Australian Physiological and Pharmacological Society, vol. 9, no. 2, pp. 94–98, 1978.
[374]  U. Trendelenburg, “Extraneuronal uptake and metabolism of catecholamines as a site of loss,” Life Sciences, vol. 22, no. 13-14, pp. 1217–1222, 1978.
[375]  I. S. Midzianovskaya, G. D. Kuznetsova, L. Tuomisto, U. MacDonald, M. A. Kulikov, and A. S. Bazyan, “The dopamine and it metabolites concentration in the different structures of WAG/Rij and Wistar rats strains' brain: the comparative analysis of audiogenic, absence and mixed form epilepsy,” Neurokimia, vol. 21, no. 4, pp. 264–270, 2004.
[376]  L. M. Birioukova, I. S. Midzyanovskaya, S. Lensu, L. Tuomisto, and G. van Luijtelaar, “Distribution of D1-like and D2-like dopamine receptors in the brain of genetic epileptic WAG/Rij rats,” Epilepsy Research, vol. 63, no. 2, pp. 89–96, 2005.
[377]  L. M. Birioukova, I. S. Midzyanovskaya, S. Lensu, L. Tuomisto, G. van Luijtelaar, and A. S. Bazyan, “Distribution D1- and D2-like dopamine receptors of WAG/Rij and ACI rats brain regions with and without absence epilepsy accordingly,” Neurokhimia, vol. 23, no. 3, pp. 234–239, 2006.
[378]  K. S. Raevskii, T. D. Sotnikova, and R. R. Gainetdinov, “The brain dopaminergic systems: receptor heterogeneity, functional role and pharmacological regulation,” Uspekhi Fiziologicheskikh Nauk, vol. 27, no. 4, pp. 3–29, 1996.
[379]  K. Y. Sarkisova and M. A. Kulikov, “Behavioral characteristics of WAG/Rij rats susceptible and non-susceptible to audiogenic seizures,” Behavioural Brain Research, vol. 166, no. 1, pp. 9–18, 2006.
[380]  A. H. Tran, R. Tamura, T. Uwano, T. Kobayashi, M. Katsuki, and T. Ono, “Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 6, pp. 2117–2122, 2005.
[381]  A. A. Bari and R. C. Pierce, “D1-like and D2 dopamine receptor antagonists administered into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement,” Neuroscience, vol. 135, no. 3, pp. 959–968, 2005.
[382]  C. M. Olsen and C. L. Duvauchelle, “Prefrontal cortex D1 modulation of the reinforcing properties of cocaine,” Brain Research, vol. 1075, no. 1, pp. 229–235, 2006.
[383]  B. A. Sorg, N. Li, W. Wu, and T. M. Bailie, “Activation of dopamine D1 receptors in the medial prefrontal cortex produces bidirectional effects on cocaine-induced locomotor activity in rats: effects of repeated stress,” Neuroscience, vol. 127, no. 1, pp. 187–196, 2004.
[384]  K. H. Choi, R. L. H. Clements, and A. J. Greenshaw, “Simultaneous AMPA/kainate receptor blockade and dopamine D2/3 receptor stimulation in the nucleus accumbens decreases brain stimulation reward in rats,” Behavioural Brain Research, vol. 158, no. 1, pp. 79–88, 2005.
[385]  Z. X. Xi, J. G. Gilbert, A. C. Pak, C. R. Ashby Jr., C. A. Heidbreder, and E. L. Gardner, “Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-cost-variable-payoff fixed-ratio cocaine self-administration in rats,” European Journal of Neuroscience, vol. 21, no. 12, pp. 3427–3438, 2005.
[386]  L. M. Pritchard, A. D. Logue, B. C. Taylor et al., “Relative expression of D3 dopamine receptor and alternative splice variant D3nf mRNA in high and low responders to novelty,” Brain Research Bulletin, vol. 70, no. 4–6, pp. 296–303, 2006.
[387]  N. M. Richtand, “Behavioral sensitization, alternative splicing, and D3 dopamine receptor-mediated inhibitory function,” Neuropsychopharmacology, vol. 31, no. 11, pp. 2368–2375, 2006.
[388]  W. J. McBride, J. M. Murphy, and S. Ikemoto, “Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies,” Behavioural Brain Research, vol. 101, no. 2, pp. 129–152, 1999.
[389]  J. M. Warter, M. Vergnes, A. Depaulis et al., “Effects of drugs affecting dopaminergic neurotransmission in rats with spontaneous petit mal-like seizures,” Neuropharmacology, vol. 27, no. 3, pp. 269–274, 1988.
[390]  C. Deransart, G. B. Landwehrmeyer, T. J. Feuerstein, and C. H. Lücking, “Up-regulation of D3 dopaminergic receptor mRNA in the core of the nucleus accumbens accompanies the development of seizures in a genetic model of absence-epilepsy in the rat,” Molecular Brain Research, vol. 94, no. 1-2, pp. 166–177, 2001.
[391]  J. M. Lauder, V. K. M. Han, and P. Henderson, “Prenatal ontogeny oaf the GABAergic system in the rat brain: an immunocytochemical study,” Neuroscience, vol. 19, no. 2, pp. 465–493, 1986.
[392]  J. Liu, A. L. Morrow, L. Devaud, D. R. Grayson, and J. M. Lauder, “ receptors mediate trophic effects of GABA on embryonic brainstem monoamine neurons in vitro,” Journal of Neuroscience, vol. 17, no. 7, pp. 2420–2428, 1997.
[393]  S. D. Ugarte, G. E. Homanics, and D. L. Hammond, “Effect of embryonic knock-down of receptors on the levels of monoamines and their metabolites in the CNS of the mouse,” Brain Research, vol. 904, no. 2, pp. 290–297, 2001.
[394]  C. Verney, “Phenotypic expression of monoamines and GABA in the early development of human telencephalon, transient or not transient,” Journal of Chemical Neuroanatomy, vol. 26, no. 4, pp. 283–292, 2003.
[395]  D. Smith and D. Gallager, “GABA, benzodiazepine and serotonergic receptor development in the dorsal raphe nucleus: electrophysiological studies,” Brain Research, vol. 432, no. 2, pp. 191–198, 1987.
[396]  J. M. Fritschy, D. Benke, S. Mertens, W. H. Oertel, T. Bachi, and H. M?hler, “Five subtypes of type A γ-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit- specific antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 15, pp. 6726–6730, 1992.
[397]  L. F. B. Nicholson, R. L. M. Faull, H. J. Waldvogel, and M. Dragunow, “The regional, cellular and subcellular localization of /benzodiazepine receptors in the substantia nigra of the rat,” Neuroscience, vol. 50, no. 2, pp. 355–370, 1992.
[398]  D. N. Stephens and L. Turski, “Kindling to the benzodiazepine receptor inverse agonist, FG 7142: evidence for involvement of NMDA, but not non-NMDA, glutamatergic receptors,” Neuropharmacology, vol. 32, no. 10, pp. 1011–1017, 1993.
[399]  G. D. Pratt, M. Kokaia, J. Bengzon et al., “Differential regulation of N-methyl-D-aspartate receptor subunit mesenger RNAs in kindling-induced epileptogenesis,” Neuroscience, vol. 57, no. 2, pp. 307–318, 1993.
[400]  M. Kokaia, G. D. Pratt, E. Elmer et al., “Biphasic differential changes of receptor subunit mRNA levels in dentate gyrus granule cells following recurrent kindling-induced seizures,” Molecular Brain Research, vol. 23, no. 4, pp. 323–332, 1994.
[401]  M. S. Evans and K. E. Viola-McCabe, “Midazolam inhibits long-term potentiation through modulation of receptors,” Neuropharmacology, vol. 35, no. 3, pp. 347–357, 1996.
[402]  M. Higashima, H. Kinoshita, and Y. Koshino, “Differences in the effects of zolpidem and diazepam on recurrent inhibition and long-term potentiation in rat hippocampal slices,” Neuroscience Letters, vol. 245, no. 2, pp. 77–80, 1998.
[403]  R. W. Stackman, T. J. Walsh, F. H. Brucato, and H. S. Swartzwelder, “Medial septal benzodiazepine receptors modulate hippocampal evoked responses and long-term potentiation,” Brain Research, vol. 717, no. 1-2, pp. 12–21, 1996.
[404]  G. R. Seabrook, A. Easter, G. R. Dawson, and B. J. Bowery, “Modulation of long-term potentiation in CA1 region of mouse hippocampal brain slices by receptor benzodiazepine site ligands,” Neuropharmacology, vol. 36, no. 6, pp. 823–830, 1997.
[405]  J. M. Koff, G. A. Pritchard, D. J. Greenblatt, and L. G. Miller, “The NMDA receptor competitive antagonist CPP modulates benzodiazepine tolerance and discontinuation,” Pharmacology, vol. 55, no. 5, pp. 217–227, 1997.
[406]  G. Shen, M. S. Mohamed, P. Das, and E. I. Tietz, “Positive allosteric activation of receptors bi-directionally modulates hippocampal glutamate plasticity and behaviour,” Biochemical Society Transactions, vol. 37, no. 6, pp. 1394–1398, 2009.
[407]  G. Shen, B. J. van Sickle, and E. I. Tietz, “Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal,” Neuropsychopharmacology, vol. 35, no. 9, pp. 1897–1909, 2010.
[408]  L. P. Niles, L. J. Smith, and C. C. Tenn, “Modulation of c-fos expression in the rat striatum by diazepam,” Neuroscience Letters, vol. 236, no. 1, pp. 5–8, 1997.
[409]  Y. Nomura, Y. Kitamura, T. Ohnuki et al., “Alterations in acetylcholine, NMDA, benzodiazepine receptors and protein kinase C in the brain of the senescence-accelerated mouse: an animal model useful for studies on cognitive enhancers,” Behavioural Brain Research, vol. 83, no. 1-2, pp. 51–55, 1997.
[410]  J. D. Johnston, S. A. Price, and D. R. Bristow, “Flunitrazepam rapidly reduces receptor subunit protein expression via a protein kinase C-dependent mechanism,” The British Journal of Pharmacology, vol. 124, no. 7, pp. 1338–1340, 1998.
[411]  L. Ramdas, B. A. Bunnin, M. J. Plunkett et al., “Benzodiazepine compounds as inhibitors of the Src protein tyrosine kinase: screening of a combinatorial library of 1,4-benzodiazepines,” Archives of Biochemistry and Biophysics, vol. 368, no. 2, pp. 394–400, 1999.
[412]  E. A. Bignante, G. Paglini, and V. A. Molina, “Previous stress exposure enhances both anxiety-like behaviour and p35 levels in the basolateral amygdala complex: modulation by midazolam,” European Neuropsychopharmacology, vol. 20, no. 6, pp. 388–397, 2010.
[413]  L. Huopaniemi, R. Keist, A. Randolph, U. Certa, and U. Rudolph, “Diazepam-induced adaptive plasticity revealed by α1 receptor-specific expression profiling,” Journal of Neurochemistry, vol. 88, no. 5, pp. 1059–1067, 2004.
[414]  S. H. Mellon and L. D. Griffin, “Neurosteroids: biochemistry and clinical significance,” Trends in Endocrinology and Metabolism, vol. 13, no. 1, pp. 35–43, 2002.
[415]  P. K. Stanton and J. M. Sarvey, “Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis,” Brain Research, vol. 361, no. 1-2, pp. 276–283, 1985.
[416]  S. A. Deadwyler, T. Dunwiddie, and G. Lynch, “A critical level of protein synthesis is required for long-term potentiation,” Synapse, vol. 1, no. 1, pp. 90–95, 1987.
[417]  T. Smirnova, S. Laroche, M. L. Errington, A. A. Hicks, T. V. P. Bliss, and J. Mallet, “Transsynaptic expression of a presynaptic glutamate receptor during hippocampal long-term potentiation,” Science, vol. 262, no. 5132, pp. 433–436, 1993.
[418]  A. R. Brooks-Kayal, M. D. Shumate, H. Jin, T. Y. Rikhter, and D. A. Coulter, “Selective changes in single cell receptor subunit expression and function in temporal lobe epilepsy,” Nature Medicine, vol. 4, no. 10, pp. 1166–1172, 1998.
[419]  R. W. Olsen, J. Yang, R. G. King, A. Dilber, G. B. Stauber, and R. W. Ransom, “Barbiturate and benzodiazepine modulation of GABA receptor binding and function,” Life Sciences, vol. 39, no. 21, pp. 1969–1976, 1986.
[420]  B. A. Pasqualotto, R. A. Lanius, and C. A. Shaw, “Regulation of AMPA receptors by agonist and depolarizing stimulation requires phosphatase or kinase activity,” NeuroReport, vol. 4, no. 4, pp. 447–450, 1993.
[421]  B. J. Krishek, X. Xie, C. Blackstone, R. L. Huganir, S. J. Moss, and T. G. Smart, “Regulation of receptor function by protein kinase C phosphorylation,” Neuron, vol. 12, no. 5, pp. 1081–1095, 1994.
[422]  B. J. McDonald and S. J. Moss, “Differential phosphorylation of intracellular domains of γ-aminobutyric acid type A receptor subunits by calcium/calmodulin type 2-dependent protein kinase and cGMP-dependent protein kinase,” The Journal of Biological Chemistry, vol. 269, no. 27, pp. 18111–18117, 1994.
[423]  M. Uusi-Oukari and E. R. Korpi, “Regulation of receptor subunit expression by pharmacological agents,” Pharmacological Reviews, vol. 62, no. 1, pp. 97–135, 2010.
[424]  J. N. Jovanovic, “Phosphorylation site-specific antibodies as research tools in studies of native receptors,” in The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology, J. T. Kittler and S. J. Moss, Eds., chapter 4, pp. 57–81, CRC Press, Boca Raton, Fla, USA, 2006, http://www.crcpress.com/.
[425]  M. Mayford, T. Abel, and E. R. Kandel, “Transgenic approaches to cognition,” Current Opinion in Neurobiology, vol. 5, no. 2, pp. 141–148, 1995.
[426]  D. S. Bredt and R. A. Nicoll, “AMPA receptor trafficking at excitatory synapses,” Neuron, vol. 40, no. 2, pp. 361–379, 2003.
[427]  T. Del'guidice and J. M. Beaulieu, “Messing up with traffic: different effects of antipsychotic agents on glutamate receptor complexes in vivo,” Molecular Pharmacology, vol. 73, no. 5, pp. 1339–1342, 2008.
[428]  J. A. Esteban, “Intracellular machinery for the transport of AMPA receptors,” The British Journal of Pharmacology, vol. 153, no. S1, pp. S35–S43, 2008.
[429]  I. Bayazitov and A. Kleschevnikov, “Afferent high strength tetanizations favour potentiation of the NMDA versus AMPA receptor-mediated component of field EPSP in CA1 hippocampal slices of rats,” Brain Research, vol. 866, no. 1-2, pp. 188–196, 2000.
[430]  S. Chen Bo- and K. W. Roche, “Regulation of NMDA receptors by phosphorylation,” Neuropharmacology, vol. 53, no. 3, pp. 362–368, 2007.
[431]  J. T. Kittler, P. Thomas, V. Tretter et al., “Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating γ-aminobutyric acid type A receptor membrane trafficking,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12736–12741, 2004.
[432]  R. S. Saliba, G. Michels, T. C. Jacob, M. N. Pangalos, and S. J. Moss, “Activity-dependent ubiquitination of receptors regulates their accumulation at synaptic sites,” Journal of Neuroscience, vol. 27, no. 48, pp. 13341–13351, 2007.
[433]  V. Tretter and S. J. Moss, “ receptor dynamics and constructing GABAergic synapses,” Frontiers in Molecular Neuroscience, vol. 1, article 7, 2008.
[434]  M. Amalric, A. Ouagazzal, C. Baunez, and A. Nieoullon, “Functional interactions between glutamate and dopamine in the rat striatum,” Neurochemistry International, vol. 25, no. 2, pp. 123–131, 1994.
[435]  C. Baunez, A. Nieoullon, and M. Amalric, “N-methyl-D-aspartate receptor blockade impairs behavioural performance of rats in a reaction time task: new evidence for glutamatergic-dopaminergic interactions in the striatum,” Neuroscience, vol. 61, no. 3, pp. 521–531, 1994.
[436]  R. Kotter, “Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum,” Progress in Neurobiology, vol. 44, no. 2, pp. 163–196, 1994.
[437]  M. E. Wolf, S. Mangiavacchi, and X. Sun, “Mechanisms by which dopamine receptors may influence synaptic plasticity,” Annals of the New York Academy of Sciences, vol. 1003, pp. 241–249, 2003.
[438]  J. L. Hu, G. Liu, Y. C. Li, W. J. Gao, and Y. Q. Huang, “Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons,” Molecular Brain, vol. 3, no. 1, article 20, 2010.
[439]  N. M. Graziane, E. Y. Yuen, and Z. Yan, “Dopamine D4 receptors regulate receptor trafficking via an actin/cofilin/myosin-dependent mechanism,” The Journal of Biological Chemistry, vol. 284, no. 13, pp. 8329–8336, 2009.
[440]  Z. Chen, K. I. Ito, S. Fujii et al., “Roles of dopamine receptors in long-term depression: enhancement via D1 receptors and inhibition via D2 receptors,” Receptors and Channels, vol. 4, no. 1, pp. 1–8, 1996.
[441]  A. S. Bazyan, V. M. Getsova, and N. V. Orlova, “Pharmacological reminders of emotional state facilitate the retrieval of traces from amnesiac memory,” Neuroscience and Behavioral Physiology, vol. 31, no. 5, pp. 509–515, 2001.
[442]  R. E. See, M. Aravagiri, and G. D. Ellison, “Chronic neuroleptic treatment in rats produces persisting changes in and dopamine D-2, but not dopamine D-1 receptors,” Life Sciences, vol. 44, no. 3, pp. 229–236, 1989.
[443]  R. E. See, A. W. Toga, and G. Ellison, “Autoradiographic analysis of regional alterations in brain recepors following chronic administration and withdrawal of typical and atypical neuroleptics in rats,” Journal of Neural Transmission—General Section, vol. 82, no. 2, pp. 93–109, 1990.
[444]  J. J. Soghomonian, “Effects of neonatal 6-hydroxydopamine injections on glutamate decarboxylase, preproenkephalin and dopamine D2 receptor mRNAs in the adult rat striatum,” Brain Research, vol. 621, no. 2, pp. 249–259, 1993.
[445]  Z. H. Qin and B. Weiss, “Dopamine receptor blockade increases dopamine D2 receptor and glutamic acid decarboxylase mRNAs in mouse substantia nigra,” European Journal of Pharmacology, vol. 269, no. 1, pp. 25–33, 1994.
[446]  S. M. Anderson and R. C. Pierce, “Cocaine-induced alterations in dopamine receptor signaling: implications for reinforcement and reinstatement,” Pharmacology and Therapeutics, vol. 106, no. 3, pp. 389–403, 2005.
[447]  N. M. Richtand, Y. Liu, R. Ahlbrand, J. R. Sullivan, A. H. Newman, and R. K. McNamara, “Dopaminergic regulation of dopamine D3 and D3nf receptor mRNA expression,” Synapse, vol. 64, no. 8, pp. 634–643, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133