全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Production, Control, and Visual Guidance of Saccadic Eye Movements

DOI: 10.1155/2013/752384

Full-Text   Cite this paper   Add to My Lib

Abstract:

Primate vision is served by rapid shifts of gaze called saccades. This review will survey current knowledge and particular problems concerning the neural control and guidance of gaze shifts. 1. Introduction Being primates endowed with a fovea providing acute vision over a very small range of the visual field, we must shift gaze to explore the world. Rapid eye movements called saccades direct the line of sight onto objects of interest in the visual field, often conspicuous objects like a berry among leaves and sometimes important objects like the family member among a social group. More is understood about visually guided saccade production than any other sensory motor system for several reasons. First, movements of the eyes are simpler than movements of the limbs or vocal apparatus because they have fewer degrees of freedom and can ignore gravity. Second, every neuron from the sensory through the motor is accessible to inquiry within the cranium. Third, advances in technology have provided accurate measurements and manipulations of the fine details of eye movements. Eye movement research with macaque monkeys has profoundly influenced clinical neurology and ophthalmology, and this translational interface runs both directions. On the one hand, insights from monkey studies have been essential for clinicians to interpret neurological examinations. On the other hand, properties of human eye movements have stimulated neurophysiological studies that have, in turn, informed clinical practice. While the neural control of movements is certainly instantiated through molecular mechanisms, it has become clear that knowledge at the level of neural systems is most useful for this clinical translation. For example, monkey models of strabismus and amblyopia (e.g., [1–5]), fourth nerve palsy (e.g., [6]), nystagmus (e.g., [7, 8]), and Parkinson’s disease (e.g., [9, 10]) have provided precise information that would otherwise have been left to clinical guesswork. These monkey models have furthermore provided refinements of new treatments such as deep brain stimulation for Parkinson’s disease, optical treatments for developmental strabismus, and drugs for nystagmus. Similarly, many neuropsychiatric disorders are associated with problems of gaze control (e.g., [11]), so obtaining neurophysiological data from monkeys performing tasks in which these problems are expressed by patients (and their relatives) will provide information that can improve the diagnosis and possibly treatment of these disorders. The literature on the production, guidance, and effects of saccades is very

References

[1]  L. Fu, R. J. Tusa, M. J. Mustari, and V. E. Das, “Horizontal saccade disconjugacy in strabismic monkeys,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3107–3114, 2007.
[2]  A. C. Joshi and V. E. Das, “Responses of medial rectus motoneurons in monkeys with strabismus,” Investigative Ophthalmology & Visual Science, vol. 52, no. 9, pp. 6697–6705, 2011.
[3]  L. Kiorpes, “Visual processing in amblyopia: animal studies,” Strabismus, vol. 14, no. 1, pp. 3–10, 2006.
[4]  J. R. Economides, D. L. Adams, C. M. Jocson, and J. C. Horton, “Ocular motor behavior in macaques with surgical exotropia,” Journal of Neurophysiology, vol. 98, no. 6, pp. 3411–3422, 2007.
[5]  G. Lennerstrand, “Strabismus and eye muscle function,” Acta Ophthalmologica Scandinavica, vol. 85, no. 7, pp. 711–723, 2007.
[6]  W. P. Madigan and W. M. Zein, “Recent developments in the field of superior oblique palsies,” Current Opinion in Ophthalmology, vol. 19, no. 5, pp. 379–383, 2008.
[7]  V. E. Das, R. J. Leigh, M. Swann, and M. J. Thurtell, “Muscimol inactivation caudal to the interstitial nucleus of Cajal induces hemi-seesaw nystagmus,” Experimental Brain Research, vol. 205, no. 3, pp. 405–413, 2010.
[8]  N. Shichinohe, G. Barnes, T. Akao et al., “Oscillatory eye movements resembling pendular nystagmus in normal juvenile macaques,” Investigative Ophthalmology & Visual Science, vol. 52, no. 6, pp. 3458–3467, 2011.
[9]  B. A. Brooks, A. F. Fuchs, and D. Finocchio, “Saccadic eye movement deficits in the MPTP monkey model of Parkinson's disease,” Brain Research, vol. 383, no. 1-2, pp. 402–407, 1986.
[10]  H. Slovin, M. Abeles, E. Vaadia, I. Haalman, Y. Prut, and H. Bergman, “Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys,” Journal of Neurophysiology, vol. 81, no. 2, pp. 858–874, 1999.
[11]  D. L. Levy, A. B. Sereno, D. C. Gooding, and G. A. O'Driscoll, “Eye tracking dysfunction in schizophrenia: characterization and pathophysiology,” Current Topics in Behavioral Neurosciences, vol. 4, pp. 311–347, 2010.
[12]  R. J. Leigh and D. S. Zee, The Neurology of Eye Movements, Oxford University Press, New York, NY, USA, 4th edition, 2006.
[13]  S. Liversedge, I. Gilchrist, and S. Everling, Oxford Handbook of Eye Movements, Oxford University Press, 2011.
[14]  D. P. Munoz and B. C. Coe, “Saccade, search and orient—the neural control of saccadic eye movements,” European Journal of Neuroscience, vol. 33, no. 11, pp. 1945–1947, 2011.
[15]  J. M. Henderson, “Eye movements and scene perception,” in Oxford Handbook of Eye Movements, S. Liversedge, I. Gilchrist, and S. Everling, Eds., pp. 593–606, Oxford University Press, 2011.
[16]  K. Rayner and S. P. Liversedge, “Linguistic and cognitive influences on eye movements during reading,” in Oxford Handbook of Eye Movements, S. Liversedge, I. Gilchrist, and S. Everling, Eds., pp. 751–766, Oxford University Press, 2011.
[17]  M. Land and B. Tatler, Looking and Acting: Vision and Eye Movements in Natural Behaviour, Oxford University Press, 2009.
[18]  H.-K. Ko, M. Poletti, and M. Rucci, “Microsaccades precisely relocate gaze in a high visual acuity task,” Nature Neuroscience, vol. 13, no. 12, pp. 1549–1554, 2010.
[19]  M. M. Hayhoe and D. H. Ballard, “Mechanisms of gaze control in natural vision,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 607–620, Oxford University Press, 2011.
[20]  H. Collewijn and E. Kowler, “The significance of microsaccades for vision and oculomotor control,” Journal of Vision, vol. 8, no. 14, article 20, 2008.
[21]  Z. M. Hafed and J. J. Clark, “Microsaccades as an overt measure of covert attention shifts,” Vision Research, vol. 42, no. 22, pp. 2533–2545, 2002.
[22]  T. S. Horowitz, E. M. Fine, D. E. Fencsik, S. Yurgenson, and J. M. Wolfe, “Fixational eye movements are not an index of covert attention,” Psychological Science, vol. 18, no. 4, pp. 356–363, 2007.
[23]  J. Laubrock, R. Kliegl, M. Rolfs, and R. Engbert, “When do microsaccades follow spatial attention?” Attention, Perception, and Psychophysics, vol. 72, no. 3, pp. 683–694, 2010.
[24]  D. W. Royal, G. Sáry, J. D. Schall, and V. A. Casagrande, “Correlates of motor planning and postsaccadic fixation in the macaque monkey lateral geniculate nucleus,” Experimental Brain Research, vol. 168, no. 1-2, pp. 62–75, 2006.
[25]  Z. M. Hafed and R. J. Krauzlis, “Microsaccadic suppression of visual bursts in the primate superior colliculus,” Journal of Neuroscience, vol. 30, no. 28, pp. 9542–9547, 2010.
[26]  D. C. Burr and M. C. Morrone, “Spatiotopic coding and remapping in humans,” Philosophical Transactions of the Royal Society B, vol. 366, no. 1564, pp. 504–515, 2011.
[27]  N. J. Hall and C. L. Colby, “Remapping for visual stability,” Philosophical Transactions of the Royal Society B, vol. 366, pp. 528–539, 2011.
[28]  M. Ibbotson and B. Krekelberg, “Visual perception and saccadic eye movements,” Current Opinion in Neurobiology, vol. 21, no. 4, pp. 553–558, 2011.
[29]  B. Bridgeman, “Visual stability,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 511–521, Oxford University Press, 2011.
[30]  W. M. Joiner, J. Cavanaugh, and R. H. Wurtz, “Modulation of shifting receptive field activity in frontal eye field by visual salience,” Journal of Neurophysiology, vol. 106, no. 3, pp. 1179–1190, 2011.
[31]  D. E. Angelaki, “The oculomotor plant and its role in three-dimensional eye orientation,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 135–150, Oxford University Press, 2011.
[32]  K. E. Cullen and M. R. Van Horn, “The neural control of fast vs. slow vergence eye movements,” European Journal of Neuroscience, vol. 33, no. 11, pp. 2147–2154, 2011.
[33]  G. Ugolini, F. Klam, M. D. Dans et al., “Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to “slow” and “fast” abducens motoneurons,” Journal of Comparative Neurology, vol. 498, no. 6, pp. 762–785, 2006.
[34]  J. M. Miller, R. C. Davison, and P. D. Gamlin, “Motor nucleus activity fails to predict extraocular muscle forces in ocular convergence,” Journal of Neurophysiology, vol. 105, no. 6, pp. 2863–2873, 2011.
[35]  E. Aksay, I. Olasagasti, B. D. Mensh, R. Baker, M. S. Goldman, and D. W. Tank, “Functional dissection of circuitry in a neural integrator,” Nature Neuroscience, vol. 10, no. 4, pp. 494–504, 2007.
[36]  A. Miri, K. Daie, A. B. Arrenberg, H. Baier, E. Aksay, and D. W. Tank, “Spatial gradients and multidimensional dynamics in a neural integrator circuit,” Nature Neuroscience, vol. 14, no. 9, pp. 1150–1161, 2011.
[37]  Y. Shinoda, Y. Sugiuchi, M. Takahashi, and Y. Izawa, “Neural substrate for suppression of omnipause neurons at the onset of saccades,” Annals of the New York Academy of Sciences, vol. 1233, no. 1, pp. 100–106, 2011.
[38]  K. Yoshida, Y. Iwamoto, S. Chimoto, and H. Shimazu, “Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats,” Journal of Neurophysiology, vol. 82, no. 3, pp. 1198–1208, 1999.
[39]  M. R. Van Horn, D. E. Mitchell, C. Massot, and K. E. Cullen, “Local neural processing and the generation of dynamic motor commands within the saccadic premotor network,” Journal of Neuroscience, vol. 30, no. 32, pp. 10905–10917, 2010.
[40]  T. Kanda, Y. Iwamoto, K. Yoshida, and H. Shimazu, “Glycinergic inputs cause the pause of pontine omnipause neurons during saccades,” Neuroscience Letters, vol. 413, no. 1, pp. 16–20, 2007.
[41]  D. A. Robinson, “Oculomotor control signals,” in Basic Mechanisms of Ocular Motility and Their Clinical Implications, pp. 337–374, Pergamon Press, Oxford, UK, 1975.
[42]  J. C. Rucker, S. H. Ying, W. Moore et al., “Do brainstem omnipause neurons terminate saccades?” Annals of the New York Academy of Sciences, vol. 1233, no. 1, pp. 48–57, 2011.
[43]  L. M. Optican, “Field theory of saccade generation: temporal-to-spatial transform in the superior colliculus,” Vision Research, vol. 35, no. 23-24, pp. 3313–3320, 1995.
[44]  R. Soetedjo, C. R. S. Kaneko, and A. F. Fuchs, “Evidence against a moving hill in the superior colliculus during saccadic eye movements in the monkey,” Journal of Neurophysiology, vol. 87, no. 6, pp. 2778–2789, 2002.
[45]  P. Their, “The oculomotor cerebellum,” in Oxford Handbook of Eye Movements, S. Liversedge, I. Gilchrist, and S. Everling, Eds., pp. 173–194, Oxford University Press, 2011.
[46]  N. P. Bichot and J. D. Schall, “Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return,” Journal of Neuroscience, vol. 22, no. 11, pp. 4675–4685, 2002.
[47]  E. E. Emeric, J. W. Brown, L. Boucher et al., “Influence of history on saccade countermanding performance in humans and macaque monkeys,” Vision Research, vol. 47, no. 1, pp. 35–49, 2007.
[48]  B. Girard and A. Berthoz, “From brainstem to cortex: computational models of saccade generation circuitry,” Progress in Neurobiology, vol. 77, no. 4, pp. 215–251, 2005.
[49]  R. Jürgens, W. Becker, and H. H. Kornhuber, “Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback,” Biological Cybernetics, vol. 39, no. 2, pp. 87–96, 1981.
[50]  C. A. Scudder, “A new local feedback model of the saccadic burst generator,” Journal of Neurophysiology, vol. 59, no. 5, pp. 1455–1475, 1988.
[51]  G. Gancarz and S. Grossberg, “A neural model of the saccade generator in the reticular formation,” Neural Networks, vol. 11, no. 7-8, pp. 1159–1174, 1998.
[52]  C. Quaia, P. Lefèvre, and L. M. Optican, “Model of the control of saccades by superior colliculus and cerebellum,” Journal of Neurophysiology, vol. 82, no. 2, pp. 999–1018, 1999.
[53]  T. P. Trappenberg, M. C. Dorris, D. P. Munoz, and R. M. Klein, “A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus,” Journal of Cognitive Neuroscience, vol. 13, no. 2, pp. 256–271, 2001.
[54]  C.-C. Lo and X.-J. Wang, “Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks,” Nature Neuroscience, vol. 9, no. 7, pp. 956–963, 2006.
[55]  B. A. Purcell, R. P. Heitz, J. Y. Cohen, J. D. Schall, G. D. Logan, and T. J. Palmeri, “Neurally constrained modeling of perceptual decision making,” Psychological Review, vol. 117, no. 4, pp. 1113–1143, 2010.
[56]  B. A. Purcell, J. D. Schall, G. D. Logan, and T. J. Palmeri, “From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search,” Journal of Neuroscience, vol. 32, no. 10, pp. 3433–3446, 2012.
[57]  D. L. Sparks, “Functional properties of neurons in the monkey superior colliculus: coupling of neuronal activity and saccade onset,” Brain Research, vol. 156, no. 1, pp. 1–16, 1978.
[58]  J. H. Fecteau and D. P. Munoz, “Warning signals influence motor processing,” Journal of Neurophysiology, vol. 97, no. 2, pp. 1600–1609, 2007.
[59]  J. W. Brown, D. P. Hanes, J. D. Schall, and V. Stuphorn, “Relation of frontal eye field activity to saccade initiation during a countermanding task,” Experimental Brain Research, vol. 190, no. 2, pp. 135–151, 2008.
[60]  G. F. Woodman, M.-S. Kang, K. Thompson, and J. D. Schall, “The effect of visual search efficiency on response preparation: neurophysiological evidence for discrete flow: research article,” Psychological Science, vol. 19, no. 2, pp. 128–136, 2008.
[61]  P. Pouget, G. D. Logan, T. J. Palmeri, L. Boucher, M. Paré, and J. D. Schall, “Neural basis of adaptive response time adjustment during saccade countermanding,” Journal of Neuroscience, vol. 31, no. 35, pp. 12604–12612, 2011.
[62]  P. L. Smith and R. Ratcliff, “Psychology and neurobiology of simple decisions,” Trends in Neurosciences, vol. 27, no. 3, pp. 161–168, 2004.
[63]  F. Verbruggen and G. D. Logan, “Response inhibition in the stop-signal paradigm,” Trends in Cognitive Sciences, vol. 12, no. 11, pp. 418–424, 2008.
[64]  D. M. Barch, T. S. Braver, C. S. Carter, R. A. Poldrack, and T. W. Robbins, “CNTRICS final task selection: executive control,” Schizophrenia Bulletin, vol. 35, no. 1, pp. 115–135, 2009.
[65]  J. Lipszyc and R. Schachar, “Inhibitory control and psychopathology: a meta-analysis of studies using the stop signal task,” Journal of the International Neuropsychological Society, vol. 16, no. 6, pp. 1064–1076, 2010.
[66]  K. N. Thakkar, J. D. Schall, L. Boucher, G. D. Logan, and S. Park, “Response inhibition and response monitoring in a saccadic countermanding task in schizophrenia,” Biological Psychiatry, vol. 69, no. 1, pp. 55–62, 2011.
[67]  M. M. G. Walton and N. J. Gandhi, “Behavioral evaluation of movement cancellation,” Journal of Neurophysiology, vol. 96, no. 4, pp. 2011–2024, 2006.
[68]  A. R. Aron and R. A. Poldrack, “Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus,” Journal of Neuroscience, vol. 26, no. 9, pp. 2424–2433, 2006.
[69]  A. R. Aron, T. E. Behrens, S. Smith, M. J. Frank, and R. A. Poldrack, “Triangulating a cognitive control network using diffusion-weighted Magnetic Resonance Imaging (MRI) and functional MRI,” Journal of Neuroscience, vol. 27, no. 14, pp. 3743–3752, 2007.
[70]  B. B. Zandbelt and M. Vink, “On the role of the striatum in response inhibition,” PLoS ONE, vol. 5, no. 11, Article ID e13848, 2010.
[71]  A. Murthy, S. Ray, S. M. Shorter, J. D. Schall, and K. G. Thompson, “Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation,” Journal of Neurophysiology, vol. 101, no. 5, pp. 2485–2506, 2009.
[72]  J. Y. Cohen, P. Pouget, R. P. Heitz, G. F. Woodman, and J. D. Schall, “Biophysical support for functionally distinct cell types in the frontal eye field,” Journal of Neurophysiology, vol. 101, no. 2, pp. 912–916, 2009.
[73]  K. Johnston, J. F. X. DeSouza, and S. Everling, “Monkey prefrontal cortical pyramidal and putative interneurons exhibit differential patterns of activity between prosaccade and antisaccade tasks,” Journal of Neuroscience, vol. 29, no. 17, pp. 5516–5524, 2009.
[74]  G. Vigneswaran, A. Kraskov, and R. N. Lemon, “Large identified pyramidal cells in macaque motor and premotor cortex exhibit “Thin Spikes”: implications for cell type classification,” Journal of Neuroscience, vol. 31, no. 40, pp. 14235–14242, 2011.
[75]  L. H. Snyder, A. P. Batista, and R. A. Andersen, “Intention-related activity in the posterior parietal cortex: a review,” Vision Research, vol. 40, no. 10-12, pp. 1433–1441, 2000.
[76]  E. Brunamonti, N. W. D. Thomas, and M. Paré, “The activity patterns of lateral intraparietal area neurons is not sufficient to control visually guided saccadic eye movements,” Program No. 855.18., Neuroscience Meeting Planner Society for Neuroscience, Washington, DC, USA, 2008.
[77]  J. D. Schall, “On the role of frontal eye field in guiding attention and saccades,” Vision Research, vol. 44, no. 12, pp. 1453–1467, 2004.
[78]  K. Wong-Lin, P. Eckhoff, P. Holmes, and J. D. Cohen, “Optimal performance in a countermanding saccade task,” Brain Research, vol. 1318, pp. 178–187, 2010.
[79]  C.-C. Lo, L. Boucher, M. Paré, J. D. Schall, and X.-J. Wang, “Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model,” Journal of Neuroscience, vol. 29, no. 28, pp. 9059–9071, 2009.
[80]  Z. M. Hafed, L. Goffart, and R. J. Krauzlis, “A neural mechanism for microsaccade generation in the primate superior colliculus,” Science, vol. 323, no. 5916, pp. 940–943, 2009.
[81]  D. C. Godlove, A. K. Garr, G. F. Woodman, and J. D. Schall, “Measurement of the extraocular spike potential during saccade countermanding,” Journal of Neurophysiology, vol. 106, no. 1, pp. 104–114, 2011.
[82]  O. Hikosaka, Y. Takikawa, and R. Kawagoe, “Role of the basal ganglia in the control of purposive saccadic eye movements,” Physiological Reviews, vol. 80, no. 3, pp. 953–978, 2000.
[83]  J. Shires, S. Joshi, and M. A. Basso, “Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements,” Current Opinion in Neurobiology, vol. 20, no. 6, pp. 717–725, 2010.
[84]  J. D. Schall and L. Boucher, “Executive control of gaze by the frontal lobes,” Cognitive, Affective and Behavioral Neuroscience, vol. 7, no. 4, pp. 396–412, 2007.
[85]  P. G. Bissett and G. D. Logan, “Post-stop-signal slowing: strategies dominate reflexes and implicit learning,” Journal of Experimental Psychology: Human Perception and Performance, 2011.
[86]  K. R. Ridderinkhof, M. Ullsperger, E. A. Crone, and S. Nieuwenhuis, “The role of the medial frontal cortex in cognitive control,” Science, vol. 306, no. 5695, pp. 443–447, 2004.
[87]  W. J. Gehring, Y. Liu, J. M. Orr, and J. Carp, “The error-related negativity (ERN/Ne),” in Oxford Handbook of Event-Related Potential Components, S.J. Luck and E. Kappenman, Eds., pp. 231–291, Oxford University Press, New York, NY, USA, 2011.
[88]  E. E. Emeric, J. W. Brown, M. Leslie, P. Pouget, V. Stuphorn, and J. D. Schall, “Performance monitoring local field potentials in the medial frontal cortex of primates: anterior cingulate cortex,” Journal of Neurophysiology, vol. 99, no. 2, pp. 759–772, 2008.
[89]  E. E. Emeric, M. Leslie, P. Pouget, and J. D. Schall, “Performance monitoring local field potentials in the medial frontal cortex of primates: supplementary eye field,” Journal of Neurophysiology, vol. 104, no. 3, pp. 1523–1537, 2010.
[90]  D. C. Godlove, E. E. Emeric, C. M. Segovis, M. S. Young, J. D. Schall, and G. F. Woodman, “Event-related potentials elicited by errors during the stop-signal task—I. macaque monkeys,” Journal of Neuroscience, vol. 31, no. 44, pp. 15640–15649, 2011.
[91]  C. B. Holroyd, N. Yeung, M. G. H. Coles, and J. D. Cohen, “A mechanism for error detection in speeded response time tasks,” Journal of Experimental Psychology, vol. 134, no. 2, pp. 163–191, 2005.
[92]  K. Nakamura, M. R. Roesch, and C. R. Olson, “Neuronal activity in Macaque SEF and ACC during performance of tasks involving conflict,” Journal of Neurophysiology, vol. 93, no. 2, pp. 884–908, 2005.
[93]  M. M. Botvinick, C. S. Carter, T. S. Braver, D. M. Barch, and J. D. Cohen, “Conflict monitoring and cognitive control,” Psychological Review, vol. 108, no. 3, pp. 624–652, 2001.
[94]  N. Yeung, M. M. Botvinick, and J. D. Cohen, “The neural basis of error detection: conflict monitoring and the error-related negativity,” Psychological Review, vol. 111, no. 4, pp. 931–959, 2004.
[95]  M. W. Cole, N. Yeung, W. A. Freiwald, and M. Botvinick, “Cingulate cortex: diverging data from humans and monkeys,” Trends in Neurosciences, vol. 32, no. 11, pp. 566–574, 2009.
[96]  M. W. Cole, N. Yeung, W. A. Freiwald, and M. Botvinick, “Conflict over cingulate cortex: between-species differences in cingulate may support enhanced cognitive flexibility in humans,” Brain, Behavior and Evolution, vol. 75, no. 4, pp. 239–240, 2010.
[97]  J. D. Schall and E. E. Emeric, “Conflict in cingulate cortex function between humans and macaque monkeys: more apparent than real. Comment on “Cingulate cortex: diverging data from humans and monkeys”,” Brain, Behavior and Evolution, vol. 75, no. 4, pp. 237–238, 2010.
[98]  R. Ratcliff and G. McKoon, “The diffusion decision model: theory and data for two-choice decision tasks,” Neural Computation, vol. 20, no. 4, pp. 873–922, 2008.
[99]  W. S. Geisler and L. K. Cormack, “Models of overt attention,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 439–454, Oxford University Press, 2011.
[100]  N. P. Bichot and R. Desimone, “Finding a face in the crowd: parallel and serial neural mechanisms of visual selection,” Progress in Brain Research, vol. 155, pp. 147–156, 2006.
[101]  J. D. Schall and J. Y. Cohen, “The neural basis of saccade target selection,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., Oxford University Press, 2011.
[102]  J. W. Bisley and M. E. Goldberg, “Attention, intention, and priority in the parietal lobe,” Annual Review of Neuroscience, vol. 33, pp. 1–21, 2010.
[103]  C. Constantinidis, “Posterior parietal mechanisms of visual attention,” Reviews in the Neurosciences, vol. 17, no. 4, pp. 415–427, 2006.
[104]  J. Gottlieb and P. Balan, “Attention as a decision in information space,” Trends in Cognitive Sciences, vol. 14, no. 6, pp. 240–248, 2010.
[105]  C. Wardak, E. Olivier, and J.-R. Duhamel, “The relationship between spatial attention and saccades in the frontoparietal network of the monkey,” European Journal of Neuroscience, vol. 33, no. 11, pp. 1973–1981, 2011.
[106]  M. Paré and M. C. Dorris, “The role of posterior parietal cortex in the regulation of saccadic eye movements,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 257–278, Oxford University Press, 2011.
[107]  L. Itti and C. Koch, “Computational modelling of visual attention,” Nature Reviews Neuroscience, vol. 2, no. 3, pp. 194–203, 2001.
[108]  J. K. Tsotsos, A Computational Perspective on Visual Attention, MIT Press, 2011.
[109]  E. Awh, K. M. Armstrong, and T. Moore, “Visual and oculomotor selection: links, causes and implications for spatial attention,” Trends in Cognitive Sciences, vol. 10, no. 3, pp. 124–130, 2006.
[110]  A. Kristjansson, “The intriguing interactive relationship between visual attention and saccadic eye movements,” in Oxford Handbook on Eye Movements, S. P. Liversedge, I. P. Gilchrist, and S. Everling, Eds., pp. 455–470, Oxford University Press, 2011.
[111]  J. D. Schall and K. G. Thompson, “Neural mechanisms of saccade target selection: evidence for a stage theory of attention and action,” in Cognitive Neuroscience of Attention, M. I. Posner, Ed., pp. 242–256, Guileford Press, 2012.
[112]  J. D. Schall, A. Morel, D. J. King, and J. Bullier, “Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams,” Journal of Neuroscience, vol. 15, no. 6, pp. 4464–4487, 1995.
[113]  N. T. Markov, P. Misery, A. Falchier et al., “Weight consistency specifies regularities of macaque cortical networks,” Cerebral Cortex, vol. 21, no. 6, pp. 1254–1272, 2011.
[114]  P. J. May, “The mammalian superior colliculus: laminar structure and connections,” Progress in Brain Research, vol. 151, pp. 321–378, 2005.
[115]  D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in the primate cerebral cortex,” Cerebral Cortex, vol. 1, no. 1, pp. 1–47, 1991.
[116]  M. T. Schmolesky, Y. Wang, D. P. Hanes et al., “Signal timing access the macaque visual system,” Journal of Neurophysiology, vol. 79, no. 6, pp. 3272–3278, 1998.
[117]  P. Barone, A. Batardiere, K. Knoblauch, and H. Kennedy, “Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hiearchical rank and intimates the operation of a distance rule,” Journal of Neuroscience, vol. 20, no. 9, pp. 3263–3281, 2000.
[118]  J. C. Anderson, H. Kennedy, and K. A. C. Martin, “Pathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey,” Journal of Neuroscience, vol. 31, no. 30, pp. 10872–10881, 2011.
[119]  F. H. Hamker and M. Zirnsak, “V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field,” Neural Networks, vol. 19, no. 9, pp. 1371–1382, 2006.
[120]  T. Ogawa and H. Komatsu, “Target selection in area V4 during a multidimensional visual search task,” Journal of Neuroscience, vol. 24, no. 28, pp. 6371–6382, 2004.
[121]  T. Ogawa and H. Komatsu, “Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search,” Experimental Brain Research, vol. 173, no. 1, pp. 1–13, 2006.
[122]  G. Mirabella, G. Bertini, I. Samengo et al., “Neurons in area V4 of the macaque translate attended visual features into behaviorally relevant categories,” Neuron, vol. 54, no. 2, pp. 303–318, 2007.
[123]  R. E. B. Mruczek and D. L. Sheinberg, “Activity of inferior temporal cortical neurons predicts recognition choice behavior and recognition time during visual search,” Journal of Neuroscience, vol. 27, no. 11, pp. 2825–2836, 2007.
[124]  J. A. Mazer and J. L. Gallant, “Goal-related activity in V4 during free viewing visual search: evidence for a ventral stream visual salience map,” Neuron, vol. 40, no. 6, pp. 1241–1250, 2003.
[125]  N. P. Bichot, A. F. Rossi, and R. Desimone, “Parallel and serial neural mechanisms for visual search in macaque area V4,” Science, vol. 308, no. 5721, pp. 529–534, 2005.
[126]  S. V. David, B. Y. Hayden, J. A. Mazer, and J. L. Gallant, “Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision,” Neuron, vol. 59, no. 3, pp. 509–521, 2008.
[127]  M. Saruwatari, M. Inoue, and A. Mikami, “Modulation of V4 shifts from dependent to independent on feature during target selection,” Neuroscience Research, vol. 60, no. 3, pp. 327–339, 2008.
[128]  G. T. Buracas and T. D. Albright, “Modulation of neuronal responses during covert search for visual feature conjunctions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 39, pp. 16853–16858, 2009.
[129]  I. Opris, A. Barborica, and V. P. Ferrera, “Microstimulation of the dorsolateral prefrontal cortex biases saccade target selection,” Journal of Cognitive Neuroscience, vol. 17, no. 6, pp. 893–904, 2005.
[130]  A. F. Rossi, N. P. Bichot, R. Desimone, and L. G. Ungerleider, “Top-down attentional deficits in Macaques with lesions of lateral prefrontal cortex,” Journal of Neuroscience, vol. 27, no. 42, pp. 11306–11314, 2007.
[131]  R. P. Hasegawa, M. Matsumoto, and A. Mikami, “Search target selection in monkey prefrontal cortex,” Journal of Neurophysiology, vol. 84, no. 3, pp. 1692–1696, 2000.
[132]  C. Constantinidis, M. N. Franowicz, and P. S. Goldman-Rakic, “The sensory nature of mnemonic representation in the primate prefrontal cortex,” Nature Neuroscience, vol. 4, no. 3, pp. 311–316, 2001.
[133]  S. Everling, C. J. Tinsley, D. Gaffan, and J. Duncan, “Selective representation of task-relevant objects and locations in the monkey prefrontal cortex,” European Journal of Neuroscience, vol. 23, no. 8, pp. 2197–2214, 2006.
[134]  H.-H. Zhou and K. G. Thompson, “Cognitively directed spatial selection in the frontal eye field in anticipation of visual stimuli to be discriminated,” Vision Research, vol. 49, no. 10, pp. 1205–1215, 2009.
[135]  N. P. Bichot, J. D. Schall, and K. G. Thompson, “Visual feature selectivity in frontal eye fields induced by experience in mature macaques,” Nature, vol. 381, no. 6584, pp. 697–699, 1996.
[136]  K. G. Thompson, D. P. Hanes, N. P. Bichot, and J. D. Schall, “Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search,” Journal of Neurophysiology, vol. 76, no. 6, pp. 4040–4055, 1996.
[137]  T. Sato, A. Murthy, K. G. Thompson, and J. D. Schall, “Search efficiency but not response interference affects visual selection in frontal eye field,” Neuron, vol. 30, no. 2, pp. 583–591, 2001.
[138]  J. Y. Cohen, R. P. Heitz, G. F. Woodman, and J. D. Schall, “Neural basis of the set-size effect in frontal eye field: timing of attention during visual search,” Journal of Neurophysiology, vol. 101, no. 4, pp. 1699–1704, 2009.
[139]  K.-M. Lee and E. L. Keller, “Neural activity in the frontal eye fields modulated by the number of alternatives in target choice,” Journal of Neuroscience, vol. 28, no. 9, pp. 2242–2251, 2008.
[140]  R. M. McPeek, “Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades,” Journal of Neurophysiology, vol. 96, no. 5, pp. 2699–2711, 2006.
[141]  J. P. Gottlieb, M. Kusunoki, and M. E. Goldberg, “The representation of visual salience in monkey parietal cortex,” Nature, vol. 391, no. 6666, pp. 481–484, 1998.
[142]  P. F. Balan, J. Oristaglio, D. M. Schneider, and J. Gottlieb, “Neuronal correlates of the set-size effect in monkey lateral intraparietal area,” PLoS Biology, vol. 6, no. 7, article e158, 2008.
[143]  T. J. Buschman and E. K. Miller, “Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices,” Science, vol. 315, no. 5820, pp. 1860–1864, 2007.
[144]  C. Constantinidis and M. A. Steinmetz, “Posterior parietal cortex automatically encodes the location of salient stimuli,” Journal of Neuroscience, vol. 25, no. 1, pp. 233–238, 2005.
[145]  A. E. Ipata, A. L. Gee, M. E. Goldberg, and J. W. Bisley, “Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task,” Journal of Neuroscience, vol. 26, no. 14, pp. 3656–3661, 2006.
[146]  T. Ogawa and H. Komatsu, “Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex,” Journal of Neurophysiology, vol. 101, no. 2, pp. 721–736, 2009.
[147]  N. W. D. Thomas and M. Paré, “Temporal processing of saccade targets in parietal cortex area LIP during visual search,” Journal of Neurophysiology, vol. 97, no. 1, pp. 942–947, 2007.
[148]  B. Kim and M. A. Basso, “Saccade target selection in the superior colliculus: a signal detection theory approach,” Journal of Neuroscience, vol. 28, no. 12, pp. 2991–3007, 2008.
[149]  R. M. McPeek and E. L. Keller, “Saccade target selection in the superior colliculus during a visual search task,” Journal of Neurophysiology, vol. 88, no. 4, pp. 2019–2034, 2002.
[150]  K. Shen and M. Paré, “Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search,” Journal of Vision, vol. 7, no. 5, article 15, 2007.
[151]  B. J. White and D. P. Munoz, “Separate visual signals for saccade initiation during target selection in the primate superior colliculus,” Journal of Neuroscience, vol. 31, no. 5, pp. 1570–1578, 2011.
[152]  M. A. Basso and R. H. Wurtz, “Neuronal activity in substantia nigra pars reticulata during target selection,” Journal of Neuroscience, vol. 22, no. 5, pp. 1883–1894, 2002.
[153]  M. T. Wyder, D. P. Massoglia, and T. R. Stanford, “Contextual modulation of central thalamic delay-period activity: representation of visual and saccadic goals,” Journal of Neurophysiology, vol. 91, no. 6, pp. 2628–2648, 2004.
[154]  A. N. Phillips and M. A. Segraves, “Predictive activity in Macaque frontal eye field neurons during natural scene searching,” Journal of Neurophysiology, vol. 103, no. 3, pp. 1238–1252, 2010.
[155]  J. O'Shea, N. G. Muggleton, A. Cowey, and V. Walsh, “Timing of target discrimination in human frontal eye fields,” Journal of Cognitive Neuroscience, vol. 16, no. 6, pp. 1060–1067, 2004.
[156]  C. Wardak, G. Ibos, J.-R. Duhamel, and E. Olivier, “Contribution of the monkey frontal eye field to covert visual attention,” Journal of Neuroscience, vol. 26, no. 16, pp. 4228–4235, 2006.
[157]  I. E. Monosov and K. G. Thompson, “Frontal eye field activity enhances object identification during covert visual search,” Journal of Neurophysiology, vol. 102, no. 6, pp. 3656–3672, 2009.
[158]  R. M. McPeek, “Reversal of a distractor effect on saccade target selection after superior colliculus inactivation,” Journal of Neurophysiology, vol. 99, no. 5, pp. 2694–2702, 2008.
[159]  L. P. Lovejoy and R. J. Krauzlis, “Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments,” Nature Neuroscience, vol. 13, no. 2, pp. 261–266, 2010.
[160]  C. Wardak, E. Olivier, and J.-R. Duhamel, “A deficit in covert attention after parietal cortex inactivation in the monkey,” Neuron, vol. 42, no. 3, pp. 501–508, 2004.
[161]  P. F. Balan and J. Gottlieb, “Functional significance of nonspatial information in monkey lateral intraparietal area,” Journal of Neuroscience, vol. 29, no. 25, pp. 8166–8176, 2009.
[162]  K. Mirpour, W. S. Ong, and J. W. Bisley, “Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search,” Journal of Neurophysiology, vol. 104, no. 6, pp. 3021–3028, 2010.
[163]  T. R. Sato and J. D. Schall, “Effects of stimulus-response compatibility on neural selection in frontal eye field,” Neuron, vol. 38, no. 4, pp. 637–648, 2003.
[164]  G. F. Woodman, M.-S. Kang, A. F. Rossi, and J. D. Schall, “Nonhuman primate event-related potentials indexing covert shifts of attention,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 38, pp. 15111–15116, 2007.
[165]  B. Y. Hayden and J. L. Gallant, “Time course of attention reveals different mechanisms for spatial and feature-based attention in area V4,” Neuron, vol. 47, no. 5, pp. 637–643, 2005.
[166]  K. G. Thompson, N. P. Bichot, and T. R. Sato, “Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience,” Journal of Neurophysiology, vol. 93, no. 1, pp. 337–351, 2005.
[167]  R. P. Heitz, J. Y. Cohen, G. F. Woodman, and J. D. Schall, “Neural correlates of correct and errant attentional selection revealed through N2pc and frontal eye field activity,” Journal of Neurophysiology, vol. 104, no. 5, pp. 2433–2441, 2010.
[168]  K. Mirpour, F. Arcizet, W. S. Ong, and J. W. Bisley, “Been there, seen that: a neural mechanism for performing efficient visual search,” Journal of Neurophysiology, vol. 102, no. 6, pp. 3481–3491, 2009.
[169]  K. G. Thompson, N. P. Bichot, and J. D. Schall, “Dissociation of visual discrimination from saccade programming in macaque frontal eye field,” Journal of Neurophysiology, vol. 77, no. 2, pp. 1046–1050, 1997.
[170]  F. Arcizet, K. Mirpour, and J. W. Bisley, “A pure salience response in posterior parietal cortex,” Cerebral Cortex, vol. 21, no. 11, pp. 2498–2506, 2011.
[171]  K. G. Thompson, K. L. Biscoe, and T. R. Sato, “Neuronal basis of covert spatial attention in the frontal eye field,” Journal of Neuroscience, vol. 25, no. 41, pp. 9479–9487, 2005.
[172]  J. Oristaglio, D. M. Schneider, P. F. Balan, and J. Gottlieb, “Integration of visuospatial and effector information during symbolically cued limb movements in monkey lateral intraparietal area,” Journal of Neuroscience, vol. 26, no. 32, pp. 8310–8319, 2006.
[173]  A. E. Ipata, A. L. Gee, J. W. Bisley, and M. E. Goldberg, “Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals,” Experimental Brain Research, vol. 192, no. 3, pp. 479–488, 2009.
[174]  N. P. Bichot, K. G. Thompson, S. C. Rao, and J. D. Schall, “Reliability of macaque frontal eye field neurons signaling saccade targets during visual search,” Journal of Neuroscience, vol. 21, no. 2, pp. 713–725, 2001.
[175]  B. Kim and M. A. Basso, “A probabilistic strategy for understanding action selection,” Journal of Neuroscience, vol. 30, no. 6, pp. 2340–2355, 2010.
[176]  J. Y. Cohen, E. A. Crowder, R. P. Heitz et al., “Cooperation and competition among frontal eye field neurons during visual target selection,” Journal of Neuroscience, vol. 30, no. 9, pp. 3227–3238, 2010.
[177]  T. Ogawa and H. Komatsu, “Differential temporal storage capacity in the baseline activity of neurons in macaque frontal eye field and area V4,” Journal of Neurophysiology, vol. 103, no. 5, pp. 2433–2445, 2010.
[178]  G. G. Gregoriou, S. J. Gotts, H. Zhou, and R. Desimone, “High-Frequency, long-range coupling between prefrontal and visual cortex during attention,” Science, vol. 324, no. 5931, pp. 1207–1210, 2009.
[179]  S. Ray and J. H. R. Maunsell, “Differences in gamma frequencies across visual cortex restrict their possible use in computation,” Neuron, vol. 67, no. 5, pp. 885–896, 2010.
[180]  G. F. Woodman and S. J. Luck, “Electrophysiological measurement of rapid shifts of attention during visual search,” Nature, vol. 400, no. 6747, pp. 867–869, 1999.
[181]  C. N. Boehler, J. K. Tsotsos, M. A. Schoenfeld, H.-J. Heinze, and J.-M. Hopf, “Neural mechanisms of surround attenuation and distractor competition in visual search,” Journal of Neuroscience, vol. 31, no. 14, pp. 5213–5224, 2011.
[182]  M. S. Howell Young, R. P. Heitz, J. D. Schall, and G. F. Woodman, “Modeling the neural generators of monkey event-related potentials indexing covert shift of attention,” Program No. 304.1 Neuroscience Meeting Planner. Society for Neuroscience San Diego, Calif, USA, 2010.
[183]  I. E. Monosov, J. C. Trageser, and K. G. Thompson, “Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field,” Neuron, vol. 57, no. 4, pp. 614–625, 2008.
[184]  J. Y. Cohen, R. P. Heitz, J. D. Schall, and G. F. Woodman, “On the origin of event-related potentials indexing covert attentional selection during visual search,” Journal of Neurophysiology, vol. 102, no. 4, pp. 2375–2386, 2009.
[185]  I. E. Monosov, D. L. Sheinberg, and K. G. Thompson, “Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 29, pp. 13105–13110, 2010.
[186]  T. Moore and M. Fallah, “Microstimulation of the frontal eye field and its effects on covert spatial attention,” Journal of Neurophysiology, vol. 91, no. 1, pp. 152–162, 2004.
[187]  K. M. Armstrong, J. K. Fitzgerald, and T. Moore, “Changes in visual receptive fields with microstimulation of frontal cortex,” Neuron, vol. 50, no. 5, pp. 791–798, 2006.
[188]  L. B. Ekstrom, P. R. Roelfsema, J. T. Arsenault, H. Kolster, and W. Vanduffel, “Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field,” Journal of Neuroscience, vol. 29, no. 34, pp. 10683–10694, 2009.
[189]  P. C. J. Taylor, A. C. Nobre, and M. F. S. Rushworth, “FEF TMS affects visual cortical activity,” Cerebral Cortex, vol. 17, no. 2, pp. 391–399, 2007.
[190]  R. Walker, P. Techawachirakul, and P. Haggard, “Frontal eye field stimulation modulates the balance of salience between target and distractors,” Brain Research, vol. 1270, pp. 54–63, 2009.
[191]  M. Usher and J. L. McClelland, “The time course of perceptual choice: the leaky, competing accumulator model,” Psychological Review, vol. 108, no. 3, pp. 550–592, 2001.
[192]  J. M. Wolfe, E. M. Palmer, and T. S. Horowitz, “Reaction time distributions constrain models of visual search,” Vision Research, vol. 50, no. 14, pp. 1304–1311, 2010.
[193]  J. C. Trageser, I. E. Monosov, Y. Zhou, and K. G. Thompson, “A perceptual representation in the frontal eye field during covert visual search that is more reliable than the behavioral report,” European Journal of Neuroscience, vol. 28, no. 12, pp. 2542–2549, 2008.
[194]  A. Murthy, S. Ray, S. M. Shorter, E. G. Priddy, J. D. Schall, and K. G. Thompson, “Frontal eye field contributions to rapid corrective saccades,” Journal of Neurophysiology, vol. 97, no. 2, pp. 1457–1469, 2007.
[195]  C.-H. Juan, S. M. Shorter-Jacobi, and J. D. Schall, “Dissociation of spatial attention and saccade preparation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 43, pp. 15541–15544, 2004.
[196]  D. L. Sparks and L. E. Mays, “Spatial localization of saccade targets—I. Compensation for stimulation-induced perturbations in eye position,” Journal of Neurophysiology, vol. 49, no. 1, pp. 45–63, 1983.
[197]  C.-H. Juan, N. G. Muggleton, O. J. L. Tzeng, D. L. Hung, A. Cowey, and V. Walsh, “Segregation of visual selection and saccades in human frontal eye fields,” Cerebral Cortex, vol. 18, no. 10, pp. 2410–2415, 2008.
[198]  D. T. Smith and T. Schenk, “Enhanced probe discrimination at the location of a colour singleton,” Experimental Brain Research, vol. 181, no. 2, pp. 367–375, 2007.
[199]  P. Pouget, I. Stepniewska, and E. A. Crowder, “Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection,” Frontiers in Neuroanatomy, vol. 3, 2009.
[200]  J. R. Platt, “Strong Inference: certain systematic methods of scientific thinking may produce much more rapid progress than others,” Science, vol. 146, pp. 347–353, 1964.
[201]  J. P. A. Ioannidis, “Why most published research findings are false,” PLoS Medicine, vol. 2, no. 8, article e124, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133