Continuous spike and wave during slow wave sleep (CSWS) is an epileptic encephalopathy that presents with neurocognitive regression and clinical seizures, and that demonstrates an electroencephalogram (EEG) pattern of electrical status epilepticus during sleep, as defined by the Commission on Classification and Terminology of the International League Against Epilepsy 1989. CSWS is an age-related condition, typically presenting in children around 5 years of age, with clinical seizures which progress within 2 years to a severe epileptic encephalopathy. The pathophysiology of CSWS is not completely understood, but the corticothalamic neuronal network involved in sleep patterns is thought to be involved. Genetic predisposition and injury in early development are thought to play etiological roles. Treatment strategies have involved traditional anticonvulsants, hormonal therapies, and other newer techniques. Outcomes are fair, and the thought is that earlier diagnosis and intervention preserve neurocognitive development, as in the case of other epileptic encephalopathies. Further understanding of the mechanisms of CSWS may lead to improved therapeutic options and thus outcomes of children with CSWS. 1. Introduction Electrical status epilepticus during sleep was first described in 1971 as EEG abnormalities that became continuous with sleep onset and ceased to be continuous upon arousal, occupying at least 85% of slow sleep tracing [1]. These children did not demonstrate overt clinical manifestations; thus, the condition was described as “subclinical” or “electrical.” In this initial study, the authors described this condition as a form of encephalopathy given cognitive impairment in all children [1], and as more patients were described with this condition, it became clear that neurocognitive deterioration occurred at the same time as the electrical status epilepticus during slow wave sleep developed [2]. Subsequently, the International League Against Epilepsy (ILAE) opted to term the condition “continuous spike and waves during sleep” (CSWS) as a specific epilepsy syndrome characterized by continuous diffuse spike-waves occurring during slow-wave sleep, seen after the onset of seizures, that has a potentially poor outcome despite a noncatastrophic onset of seizures, related to the development of neurocognitive deficits (Commission on Classification and Terminology of the International League Against Epilepsy, 1989). Electrical status epilepticus during sleep (ESES) is now the term typically used to describe solely the electrographic findings, while the CSWS
References
[1]
G. Patry, S. Lyagoubi, and C. A. Tassinari, “Subclinical “electrical status epilepticus” induced by sleep in children. A clinical and electroencephalographic study of six cases,” Archives of Neurology, vol. 24, no. 3, pp. 242–252, 1971.
[2]
T. Loddenkemper, I. S. Fernández, and J. M. Peters, “Continuous spike and waves during sleep and electrical status epilepticus in sleep,” Journal of Clinical Neurophysiology, vol. 28, no. 2, pp. 154–164, 2011.
[3]
Y. Z. Eksioglu, E. Tas, M. Takeoka, et al., “Clinical presentation and acute treatment of electrical status epilepticus in sleep and sleep potentiated spikes,” Neurology, vol. 72, 2009, abstract no. A434.
[4]
T. Morikawa, M. Seino, Y. Watanabe, M. Watanabe, and K. Yagi, “Clinical relevance of continuous spike-waves during slow wave sleep,” in Advances in Epileptology, S. Manelis, E. Bental, J. N. Loeber, and F. E. Dreifuss, Eds., pp. 359–3363, Raven Press, New York, NY, USA, 1989.
[5]
M. Bureau, “Outstanding cases of CSWS and LKS: analysis of the data sheets provided by the participants,” in Continuous Spikes and Waves during Slow Sleep. Electrical Status Epilepticus during Slow Sleep: Acquired Epileptic Aphasia and Related Conditions, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 213–216, John Libbey, London, UK, 1995.
[6]
M. Inutsuka, K. Kobayashi, M. Oka, J. Hattori, and Y. Ohtsuka, “Treatment of epilepsy with electrical status epilepticus during slow sleep and its related disorders,” Brain and Development, vol. 28, no. 5, pp. 281–286, 2006.
[7]
Y. Ohtsuka, A. Tanaka, K. Kobayashi et al., “Childhood-onset epilepsy associated with polymicrogyria,” Brain and Development, vol. 24, no. 8, pp. 758–765, 2002.
[8]
M. van Hirtum-Das, E. A. Licht, S. Koh, J. Y. Wu, W. D. Shields, and R. Sankar, “Children with ESES: variability in the syndrome,” Epilepsy Research, vol. 70, supplement 1, pp. S248–S258, 2006.
[9]
M. Bureau, “‘Continuous spikes and waves during slow sleep’ (CSWS): definition of the syndrome,” in Continuous Spikes and Waves during Slow Sleep. Electrical Status Epilepticus during Slow Sleep: Acquired Epileptic Aphasia and Related Conditions, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 17–26, John Libbey, London, UK, 1995.
[10]
C. A. Tassinari, M. Bureau, C. Dravet, et al., “Epilepsy with continuous spikes and waves during slow sleep-otherwise described as ESES (epilepsy with electrical status epilepticus during slow sleep),” in Epileptic Syndromes in Infancy, Childhood and Adolescence, J. Roger, M. Bureau, C. Dravet, P. Genton, C. A. Tassinari, and P. Wolf, Eds., pp. 245–256, John Libbey, London, UK, 2nd edition, 1992.
[11]
T. Morikawa, M. Seino, and M. Watanabe, “Long-term outcome of CSWS syndrome,” in Continuous Spikes and Waves during Slow Sleep. Electrical Status Epilepticus during Slow Sleep: Acquired Epileptic Aphasia and Related Conditions, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 27–36, John Libbey, London, UK, 1995.
[12]
D. P. Sarco and M. Takeoka, “Epileptic and epileptiform encephalopathies,” Emedicine, July 2009, http://emedicine.medscape.com/article/1179970-overview.
[13]
S. Raha, U. Shah, and V. Udani, “Neurocognitive and neurobehavioral disabilities in epilepsy with Electrical Status Epilepticus in slow sleep (ESES) and related syndromes,” Epilepsy & Behavior, vol. 25, pp. 381–385, 2012.
[14]
C. A. Tassinari, G. Rubboli, L. Volpi et al., “Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia,” Clinical Neurophysiology, vol. 111, supplement 2, pp. S94–S102, 2000.
[15]
E. Tas, M. Takeoka, J. Molino, et al., “Thalamic lesions increase the frequency of spiking during sleep,” Epilepsia, vol. 50, supplement 11, p. 479, 2009, abstract no. A3354.
[16]
I. Sanchez Fernandez, J. Peters, S. Hadjiloizou, et al., “Clinical staging and electroencephalographic evolution of continuous spikes and waves during sleep,” Epilepsia, vol. 53, no. 7, pp. 1185–1195, 2012.
[17]
M. Buzatu, C. Bulteau, C. Altuzarra, O. Dulac, and P. van Bogaert, “Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep,” Epilepsia, vol. 50, supplement 7, pp. 68–72, 2009.
[18]
M. P. Beenhakker and J. R. Huguenard, “Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy?” Neuron, vol. 62, no. 5, pp. 612–632, 2009.
[19]
K. A. Smith and R. S. Fisher, “The selective GABA(B) antagonist CGP-35348 blocks spike-wave bursts in the cholesterol synthesis rat absence epilepsy model,” Brain Research, vol. 729, no. 2, pp. 147–150, 1996.
[20]
K. F. Y. Chan, W. M. Burnham, Z. Jia, M. A. Cortez, and O. C. Snead III, “GABAB receptor antagonism abolishes the learning impairments in rats with chronic atypical absence seizures,” European Journal of Pharmacology, vol. 541, no. 1-2, pp. 64–72, 2006.
[21]
M. Siniatchkin, K. Groening, J. Moehring et al., “Neuronal networks in children with continuous spikes and waves during slow sleep,” Brain, vol. 133, no. 9, pp. 2798–2813, 2010.
[22]
M. Coutelier, S. Andries, S. Ghariani et al., “Neuroserpin mutation causes electrical status epilepticus of slow-wave sleep,” Neurology, vol. 71, no. 1, pp. 64–66, 2008.
[23]
K. Kobayashi, H. Hata, M. Oka et al., “Age-related electrical status epilepticus during sleep and epileptic negative myoclonus in DRPLA,” Neurology, vol. 66, no. 5, pp. 772–773, 2006.
[24]
B. Ben-Zeev, S. Kivity, Y. Pshitizki, N. Watemberg, N. Brand, and U. Kramer, “Congenital hydrocephalus and continuous spike wave in slow-wave sleep—a common association?” Journal of Child Neurology, vol. 19, no. 2, pp. 129–134, 2004.
[25]
M. de Negri, M. G. Baglietto, F. M. Battaglia, R. Gaggero, A. Pessagno, and L. Recanati, “Treatment of electrical status epilepticus by short diazepam (DZP) cycles after DZP rectal bolus test,” Brain and Development, vol. 17, no. 5, pp. 330–333, 1995.
[26]
M. de Negri, “Electrical status epilepticus during sleep (ESES). Different clinical syndromes: towards a unifying view?” Brain and Development, vol. 19, no. 7, pp. 447–451, 1997.
[27]
C. Rousselle and M. Revol, “Relations between cognitive functions and continuous spikes and waves during slow sleep,” in Continuous Spikes and Waves during Slow Sleep. Electrical Status Epilepticus during Slow Sleep: Acquired Epileptic Aphasia and Related Conditions, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 123–133, John Libbey, London, UK, 1995.
[28]
K. Nickels and E. Wirrell, “Electrical status epilepticus in sleep,” Seminars in Pediatric Neurology, vol. 15, no. 2, pp. 50–60, 2008.
[29]
D. B. Sinclair and T. J. Snyder, “Corticosteroids for the treatment of Landau-Kleffner syndrome and continuous spike-wave discharge during sleep,” Pediatric Neurology, vol. 32, no. 5, pp. 300–306, 2005.
[30]
A. G. C. Bergqvist, C. M. Chee, L. M. Lutchka, and A. R. Brooks-Kayal, “Treatment of acquired epileptic aphasia with the ketogenic diet,” Journal of Child Neurology, vol. 14, no. 11, pp. 696–701, 1999.
[31]
M. Nikanorova, M. J. Miranda, M. Atkins, and L. Sahlholdt, “Ketogenic diet in the treatment of refractory continuous spikes and waves during slow sleep,” Epilepsia, vol. 50, no. 5, pp. 1127–1131, 2009.
[32]
B. D. Moseley, R. Dhamija, and E. C. Wirrell, “The cessation of continuous spike wave in slow-wave sleep following a temporal lobectomy,” Journal of Child Neurology, vol. 27, no. 1, pp. 113–116, 2012.
[33]
L. J. Bindman, O. C. J. Lippold, and J. W. T. Redfearn, “Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents,” Nature, vol. 196, no. 4854, pp. 584–585, 1962.
[34]
O. D. Creutzfeldt, G. H. Fromm, and H. Kapp, “Influence of transcortical d-c currents on cortical neuronal activity,” Experimental Neurology, vol. 5, no. 6, pp. 436–452, 1962.
[35]
P. Faria, F. Fregni, F. Sebastiao, A. Dias, and A. Leal, “Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilpesy,” Epilepsy & Behavior, vol. 25, pp. 417–425, 2012.
[36]
S. V?lkl-Kernstock, S. Bauch-Prater, E. Ponocny-Seliger, and M. Feucht, “Speech and school performance in children with benign partial epilepsy with centro-temporal spikes (BCECTS),” Seizure, vol. 18, no. 5, pp. 320–326, 2009.
[37]
T. Deonna and E. Roulet, “Acquired epileptic aphasia (AEA): definition of syndrome and current problems,” in Continuous Spikes and Waves during Slow Sleep. Electrical Status Epilepticus during Slow Sleep: Acquired Epileptic Aphasia and Related Conditions, A. Beaumanoir, M. Bureau, T. Deonna, L. Mira, and C. A. Tassinari, Eds., pp. 37–45, John Libbey, London, UK, 1995.
[38]
M. S. Bhatia, S. Shome, R. K. Chadda, and S. Saurabh, “Landau-Kleffner syndrome in cerebral cysticercosis,” Indian Pediatrics, vol. 31, no. 5, pp. 584–587, 1994.
[39]
A. Arzimanoglou, J. French, W. T. Blume et al., “Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology,” The Lancet Neurology, vol. 8, no. 1, pp. 82–93, 2009.