全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Silver Nanoparticle Synthesis Using Monosaccharides and Their Growth Inhibitory Activity against Gram-Negative and Positive Bacteria

DOI: 10.1155/2014/480284

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using various monosaccharides as reductant, we synthesized Ag nanoparticles (NPs) in seconds employing the household microwave method described earlier. The Ag NPs containing colloidal solution showed distinctive colors with varying . The sizes of the NPs formed varied significantly from 10 to 35?nm in good agreement with the localized plasmon resonance ranged from ~300 to ~600?nm. The antimicrobial properties of these NPs were compared in Gram-negative and positive bacteria in liquid culture. Gram-positive bacteria were highly susceptible compared to Gram-negative microbes—the additional lipopolysaccharide layer covering the peptidoglycan cell wall in the latter somewhat lessens the effect. The results indicated that larger NPs produced by glucose inhibited bacterial growth better than the smallest NPs produced by ribose. This may be attributed to the higher aggregation rate for larger NPs on cell wall. SEM analysis showed accumulation of NPs on cell surface and defect in budding, further supporting the cell wall interaction with Ag NPs. These observations suggested that the growth inhibition of Ag NPs is mediated by interfering with the bacterial cell wall peptidoglycan. 1. Introduction The use of nanotechnology in everyday applications continues to increase due to unique chemical, optical, and mechanical properties of nanoparticles (NPs) [1] and it holds promise for multitude of potential applications in the fields of drug delivery [2], catalysis [3], cell and organelle labeling and imaging [4, 5], biological sensing [6], and detection of wide range of biomolecules [7–10]. The important characteristic of NPs that separates them from their bulk counterparts is high surface area to volume ratio. Moreover, it has been shown that materials at the nanoscale level have unique chemical and physical properties compared to their bulk counterpart, and these properties are important for a variety of technological applications. Interaction of NPs with biomolecules and its application in combating microorganisms are a new avenue for research. Increase in bactericide and antibiotic-resistant microbial strains and the toxicity of some of these agents lead to growing interest in new types of safe and cost-effective antimicrobial agents [11]. Recent studies that metal and metal oxide NPs could be used as effective bactericidal materials open the door for development of a new type of antimicrobial materials [12, 13]. Among the noble-metal NPs, silver received attention due to its interesting physiochemical properties and for the well-known toxicity of its ionic form

References

[1]  S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” Journal of Physical Chemistry B, vol. 103, no. 40, pp. 8410–8426, 1999.
[2]  P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307–1315, 2008.
[3]  K. Y. Lee, J. Hwang, Y. W. Lee, J. Kim, and S. W. Han, “One-step synthesis of gold nanoparticles using azacryptand and their applications in SERS and catalysis,” Journal of Colloid and Interface Science, vol. 316, no. 2, pp. 476–481, 2007.
[4]  P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1578–1586, 2008.
[5]  C. J. Murphy, A. M. Gole, S. E. Hunyadi et al., “Chemical sensing and imaging with metallic nanorods,” Chemical Communications, vol. 8, no. 5, pp. 544–557, 2008.
[6]  Z. Wang, A. Bonoiu, M. Samoc, Y. Cui, and P. N. Prasad, “Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe,” Biosensors and Bioelectronics, vol. 23, no. 6, pp. 886–891, 2008.
[7]  Z. Shu-hong, F. Yong-shan, F. Shuo, and Z. Yun-feng, “Microdetermination of proteins by resonance light scattering technique based on aggregation of ferric nanoparticles,” Spectrochimica Acta A, vol. 72, no. 4, pp. 748–752, 2009.
[8]  S. T. Dubas and V. Pimpan, “Green synthesis of silver nanoparticles for ammonia sensing,” Talanta, vol. 76, no. 1, pp. 29–33, 2008.
[9]  X. Zhao, R. Tapec-Dytioco, and W. Tan, “Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 38, pp. 11474–11475, 2003.
[10]  Q. Zhang, C. Z. Huang, J. Ling, and Y. F. Li, “Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde,” Journal of Physical Chemistry B, vol. 112, no. 51, pp. 16990–16994, 2008.
[11]  M. Rai, A. Yadav, and A. Gade, “Silver nanoparticles as a new generation of antimicrobials,” Biotechnology Advances, vol. 27, no. 1, pp. 76–83, 2009.
[12]  V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009.
[13]  P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, “Metal oxide nanoparticles as bactericidal agents,” Langmuir, vol. 18, no. 17, pp. 6679–6686, 2002.
[14]  D. B. Hamal and K. J. Klabunde, “Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2,” Journal of Colloid and Interface Science, vol. 311, no. 2, pp. 514–522, 2007.
[15]  S. W. P. Wijnhoven, W. J. G. M. Peijnenburg, C. A. Herberts et al., “Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment,” Nanotoxicology, vol. 3, no. 2, pp. 109–138, 2009.
[16]  L. Loomba and T. Scarabelli, “Metallic nanoparticles and their medicinal potential. Part I: gold and silver colloids,” Therapeutic Delivery, vol. 4, pp. 859–873, 2013.
[17]  I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004.
[18]  J. L. Elechiguerra, J. L. Burt, J. R. Morones et al., “Interaction of silver nanoparticles with HIV-1,” Journal of Nanobiotechnology, vol. 3, article 6, pp. 1–10, 2005.
[19]  S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1712–1720, 2007.
[20]  X. Chen and H. J. Schluesener, “Nanosilver: a nanoproduct in medical application,” Toxicology Letters, vol. 176, no. 1, pp. 1–12, 2008.
[21]  C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chemical Reviews, vol. 105, no. 4, pp. 1025–1102, 2005.
[22]  P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003.
[23]  X. Gao, G. Gu, Z. Hu, Y. Guo, X. Fu, and J. Song, “A simple method for preparation of silver dendrites,” Colloids and Surfaces A, vol. 254, no. 1–3, pp. 57–61, 2005.
[24]  Z. Dong, D. Richardson, C. Pelham, and M. R. Islam, “Rapid synthesis of silver nanoparticles using a household microwave and their characterization: a simple experiment for nanoscience laboratory,” Chemical Education, vol. 13, pp. 240–243, 2008.
[25]  A. Sarkar, S. Kapoor, and T. Mukherjee, “Synthesis of silver nanoprisms in formamide,” Journal of Colloid and Interface Science, vol. 287, no. 2, pp. 496–500, 2005.
[26]  Y. Li, Y. Wu, and B. S. Ong, “Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics,” Journal of the American Chemical Society, vol. 127, no. 10, pp. 3266–3267, 2005.
[27]  P. R. Selvakannan, A. Swami, D. Srisathiyanarayanan et al., “Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface,” Langmuir, vol. 20, no. 18, pp. 7825–7836, 2004.
[28]  A. L. Swatek, Z. Dong, J. Shaw, and M. R. Islam, “Self-assembly of silver nanoparticles into dendritic flowers from aqueous solution,” Journal of Experimental Nanoscience, vol. 5, no. 1, pp. 10–16, 2010.
[29]  J. Ruben Morones and W. Frey, “Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent,” Langmuir, vol. 23, no. 15, pp. 8180–8186, 2007.
[30]  H. S. Shin, H. J. Yang, S. B. Kim, and M. S. Lee, “Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution,” Journal of Colloid and Interface Science, vol. 274, no. 1, pp. 89–94, 2004.
[31]  L. Rodríguez-Sánchez, M. C. Blanco, and M. A. López-Quintela, “Electrochemical synthesis of silver nanoparticles,” Journal of Physical Chemistry B, vol. 104, no. 41, pp. 9683–9688, 2000.
[32]  K. C. Bhainsa and S. F. D'Souza, “Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus,” Colloids and Surfaces B, vol. 47, no. 2, pp. 160–164, 2006.
[33]  K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan, “Biosynthesis of silver nanocrystals by Bacillus licheniformis,” Colloids and Surfaces B, vol. 65, no. 1, pp. 150–153, 2008.
[34]  V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir, vol. 23, no. 12, pp. 6766–6770, 2007.
[35]  W.-T. Liu, “Nanoparticles and their biological and environmental applications,” Journal of Bioscience and Bioengineering, vol. 102, no. 1, pp. 1–7, 2006.
[36]  G. Merga, R. Wilson, G. Lynn, B. H. Milosavljevic, and D. Meisel, “Redox catalysis on “naked” silver nanoparticles,” Journal of Physical Chemistry C, vol. 111, no. 33, pp. 12220–12226, 2007.
[37]  R. Brause, H. M?ltgen, and K. Kleinermanns, “Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy,” Applied Physics B, vol. 75, no. 6-7, pp. 711–716, 2002.
[38]  M. Kerker, “The optics of colloidal silver: something old and something new,” Journal of Colloid And Interface Science, vol. 105, no. 2, pp. 297–314, 1985.
[39]  I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” Journal of Physical Chemistry B, vol. 107, no. 26, pp. 6269–6275, 2003.
[40]  Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. M. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” Journal of Biomedical Material Research, vol. 52, pp. 662–668, 2000.
[41]  J. F. Hillyer and R. M. Albrecht, “Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles,” Journal of Pharmaceutical Sciences, vol. 90, no. 12, pp. 1927–1936, 2001.
[42]  C. Aymonier, U. Schlotterbeck, L. Antonietti et al., “Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties,” Chemical Communications, vol. 8, no. 24, pp. 3018–3019, 2002.
[43]  J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005.
[44]  Z. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Letters, vol. 12, pp. 4271–4275, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133