全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preparation and Ethanol Sensing Properties of ZnO Nanoparticles via a Novel Sol-Gel Method

DOI: 10.5402/2012/879480

Full-Text   Cite this paper   Add to My Lib

Abstract:

ZnO nanoparticles were prepared using a novel sol-gel method. Chemical reactions were carried out between zinc acetate and methanol under ambient conditions using monoethanol amine (MEA) as surfactant and subsequent heating at 2 0 0 ° C . The powders were calcined, pressed into pellets, and presintered. The properties of the product were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectra. For gas sensing experiment, ethanol was used as testing gas. The gas sensing results showed that the maximum value for detecting of 1000?ppm ethanol vapor was 25 at an operating temperature of 3 7 0 ° C . 1. Introduction Oxide semiconductor nanostructures have been widely investigated in recent years because of their excellent properties [1] and application in novel optical, electrical, and mechanical devices such as photovoltaic solar cells, luminescence, biomedicine, photocatalysis, light-emitting diodes (LEDs), varistors, and optoelectronic nanodevices [2–6]. ZnO is an n-type II–VI semiconductor with wide band gap of 3.37?eV, large exciton binding energy (~60?meV), strong emission, large saturation velocity (~3.2 × 107?cm/s), and high breakdown voltage [7, 8]. These properties make it a promising material for optoelectronic devices in the ultraviolet (UV) and blue region of the electromagnetic spectrum [9], optical or display devices, solar cells [9, 10] catalysis [11], cantilevers production, piezoelectric applications [6], superficial acoustic waves (SAW) [12], and humidity [11] and gas sensors [13]. Furthermore, ZnO has high transparency, chemical and thermal stability, high conductance, and it is nontoxic, inexpensive, and one of the few oxides that exhibit quantum confinement effects in an experimentally accessible size range [2, 3]. ZnO nanostructures which can come in different shapes such as nanowires, nanobelts, nanorods, nanotubes, and nanoparticles can exhibit interesting physical and chemical properties not found in other nanostructures [14, 15]. ZnO in pure and doped form has been intensively studied, and ZnO gas sensor elements have been prepared and studied in different forms, mostly as thin films, thick films, single crystals, wintered pellets, and hetero junctions while not many have been reported in the bulk form [16, 17]. Various methods have been used for the production of ZnO nanostructures, such as vapor-liquid-solid (VLS) method, reaction-vapor deposition, physical vapor deposition, pulsed-laser deposition, thermal evaporation, metal organic chemical vapor deposition

References

[1]  Y. Bahari Molla Mahaleh, S. K. Sadrnezhaad, and D. Hosseini, “NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size,” Journal of Nanomaterials, vol. 2008, no. 1, Article ID 470595, 4 pages, 2008.
[2]  J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors,” Journal of Sensors and Actuators, B, vol. 132, no. 1, pp. 334–339, 2008.
[3]  G. Xing, G. Chen, X. Song, X. Yuan, W. Yao, and H. Yan, “ZnO and TiO2 nanoparticles encapsulated in boron nitride nanocages,” Journal of Microelectronic Engineering, vol. 66, no. 1–4, pp. 70–76, 2003.
[4]  M. H. Liao, C. H. Hsu, and D. H. Chen, “Preparation and properties of amorphous titania-coated zinc oxide nanoparticles,” Journal of Solid State Chemistry, vol. 179, no. 7, pp. 2020–2026, 2006.
[5]  N. Boukos, C. Chandrinou, K. Giannakopoulos, G. Pistolis, and A. Travlos, “Growth of ZnO nanorods by a simple chemical method,” Journal of Applied Physics A, vol. 88, no. 1, pp. 35–39, 2007.
[6]  M. C. Carotta, A. Cervi, V. di Natale et al., “ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films,” Journal of Sensors and Actuators, B, vol. 137, no. 1, pp. 164–169, 2009.
[7]  X. Zi-qiang, D. Hong, L. Yan, and C. Hang, “Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films,” Materials Science in Semiconductor Processing, vol. 9, no. 1–3, pp. 132–135, 2006.
[8]  W. Jun and Y. Yintang, “Deposition of K-doped p type ZnO thin films on (0001) Al2O3 substrates,” Journal of Materials Letters, vol. 62, no. 12-13, pp. 1899–1901, 2008.
[9]  S. A. M. Lima, M. Cremona, M. R. Davolos, C. Legnani, and W. G. Quirino, “Electroluminescence of zinc oxide thin-films prepared via polymeric precursor and via sol-gel methods,” Thin Solid Films, vol. 516, no. 2–4, pp. 165–169, 2007.
[10]  Y. Caglar, S. Ilican, M. Caglar, and F. Yakuphanoglu, “Effects of In, Al and Sn dopants on the structural and optical properties of ZnO thin films,” Journal of Spectrochimica Acta—Part A, vol. 67, no. 3-4, pp. 1113–1119, 2007.
[11]  B. C. Yadav, R. Srivastava, C. D. Dwivedi, and P. Pramanik, “Synthesis of nano-sized ZnO using drop wise method and its performance as moisture sensor,” Sensors and Actuators, A, vol. 153, no. 2, pp. 137–141, 2009.
[12]  H. Gómez and M. de la L. Olvera, “Ga-doped ZnO thin films: effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties,” Journal of Materials Science and Engineering B, vol. 134, no. 1, pp. 20–26, 2006.
[13]  Y. S. Sonawane, K. G. Kanade, B. B. Kale, and R. C. Aiyer, “Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles,” Journal of Materials Research Bulletin, vol. 43, no. 10, pp. 2719–2726, 2008.
[14]  G. Srinivasan, R. T. Rajendra Kumar, and J. Kumar, “Influence of Al dopant on microstructure and optical properties of ZnO thin films prepared by sol-gel spin coating method,” Optical Materials, vol. 30, no. 2, pp. 314–317, 2007.
[15]  X. W. Zhu, Y. Q. Li, Y. Lu, L. C. Liu, and Y. B. Xia, “Effects of Li or Li/Mg dopants on the orientation of ZnO nanorods prepared by sol-gel method,” Journal of Materials Chemistry and Physics, vol. 102, no. 1, pp. 75–79, 2007.
[16]  A. B. Bodade, A. M. Bende, and G. N. Chaudhari, “Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor,” Journal of Vacuum, vol. 82, no. 6, pp. 588–593, 2008.
[17]  S. H. Jeong, B. N. Park, S. B. Lee, and J. H. Boo, “Metal-doped ZnO thin films: synthesis and characterizations,” Surface and Coatings Technology, vol. 201, no. 9–11, pp. 5318–5322, 2007.
[18]  F. Xu, Z. Y. Yuan, G. H. Du, M. Halasa, and B. L. Su, “High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties,” Journal of Applied Physics A, vol. 86, no. 2, pp. 181–185, 2007.
[19]  S. C. Navale and I. S. Mulla, “Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO,” Materials Science and Engineering C, vol. 29, no. 4, pp. 1317–1320, 2009.
[20]  Y. Cao, P. Hu, W. Pan, Y. Huang, and D. Jia, “Methanal and xylene sensors based on ZnO nanoparticles and nanorods prepared by room-temperature solid-state chemical reaction,” Journal of Sensors and Actuators, B, vol. 134, no. 2, pp. 462–466, 2008.
[21]  S. G. Ansari, R. Wahab, Z. A. Ansari et al., “Effect of nanostructure on the urea sensing properties of sol-gel synthesized ZnO,” Journal of Sensors and Actuators, B, vol. 137, no. 2, pp. 566–573, 2009.
[22]  Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Cheng, and S. Huang, “Ethanol gas sensor based on Al-doped ZnO nanomaterial with many gas diffusing channels,” Journal of Sensors and Actuators, B, vol. 140, no. 2, pp. 549–556, 2009.
[23]  C. Ge, Z. Bai, M. Hu, D. Zeng, S. Cai, and C. Xie, “Preparation and gas-sensing property of ZnO nanorod-bundle thin films,” Journal of Materials Letters, vol. 62, no. 15, pp. 2307–2310, 2008.
[24]  B. C. Yadav, R. Srivastava, C. D. Dwivedi, and P. Pramanik, “Moisture sensor based on ZnO nanomaterial synthesized through oxalate route,” Journal of Sensors and Actuators, B, vol. 131, no. 1, pp. 216–222, 2008.
[25]  Z. Liul, Z. Jin, W. Li, and J. Qiu, “Preparation of ZnO Porous Thin Films by Sol-Gel Method Using PEG Template,” Journal of Materials Letters, vol. 59, pp. 3620–3625, 2005.
[26]  M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sintering,” Journal of the American Ceramic Society, vol. 59, no. 1-2, pp. 4–8, 1976.
[27]  C. Ge, C. Xie, and S. Cai, “Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating,” Journal of Materials Science and Engineering B, vol. 137, no. 1–3, pp. 53–58, 2007.
[28]  M. R. Vaezi, , Ph.D. thesis, Sharif University of Technology, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133