全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Luminescence Properties of Eu- and Mg-Codoped Sol-Gel Glasses

DOI: 10.5402/2012/298694

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of SiO2 nanostructures codoped with Eu3+; Mg2+ ions were obtained by a sol-gel method. The gels synthesized by the hydrolysis of Si(OC2H5)4, Eu(NO3)3·6H2O, and Mg(NO3)2 were heated in air at 600°C for 2 hours. Firstly, the total amount of Eu3+ ions was varied from 0 to 2.0?mol% to investigate the effect of self-damping, while in the second case, the Eu3+ ions were kept constant in the experiment at 0.5?mol% total doping and Mg2+ ions varied. The samples were characterized by X-ray diffraction, TEM, EDS, and UV lamp-excited luminescence spectroscopy. The Eu3+ ions were homogeneously dispersed in the silica and interacting with the small (1–5?nm) amorphous silica matrix. Strong red emissions located at 614?nm and 590?nm for doped and codoped SiO2 were observed from the UV light excitation at room temperature. The composition of around 1.25?mol% Eu3+ gave highest emission intensity. SiO2; Mg2+ ions portray strongly enhanced emissions due to energy transfer from Mg2+ to Eu3+, which is due to radiative recombination. An increase in luminescence intensity was observed as the Mg2+-to-Eu3+ ratio increased for the range investigated. The results show Eu3+ ion is located inside or at the surface of disordered SiO2 nanoparticles. 1. Introduction The sol-gel technique that involves the simultaneous hydrolysis and condensation reaction of the metal alkoxide is one of the most common methods of synthesizing silica nanoparticles [1]. It is an efficient technique for the synthesis of phosphors due to the good mixing of starting materials and relatively low reaction temperature resulting in more homogenous products than those obtained by the solid-state reaction synthesis method. Lanthanide ions have been employed as optically active centers due to unique electronic configurations, which result in special spectroscopic properties. Thus, these ions have played prominent role in lighting and light conversion technologies. However, their optical properties, not only depend on the nature of the active ions, but also on the site environment provided by the host lattice. Rare earth ions or lanthanides in a silica host matrix have a wide range of applications in active materials for solid-state lasers, amplifiers, electro-optic devices and sensors because of their well-known fluorescing property [2–9]. In particular, europium is of great interest since it displays both a sharp luminescence in the orange-red as trivalent ion and a broad band one from UV to blue-green in its divalent configuration. Eu3+ ions are widely used as activators in various materials for their

References

[1]  L. L. Hench and J. K. West, “The sol-gel process,” Chemical Reviews, vol. 90, no. 1, pp. 33–72, 1990.
[2]  A. P. Golovina, V. K. Runov, and N. B. Zorov, “Chemical luminescence analysis of inorganic substances,” in Ferrites. Transitions Elements Luminescence, vol. 47 of Structure & Bonding, pp. 53–119, 1981.
[3]  H. Eilers and B. M. Tissue, “Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3,” Chemical Physics Letters, vol. 251, no. 1-2, pp. 74–78, 1996.
[4]  R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium,” Physical Review B, vol. 60, no. 20, pp. R14012–R14015, 1999.
[5]  T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, and M. Senna, “Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor,” Applied Physics Letters, vol. 76, no. 12, pp. 1549–1551, 2000.
[6]  G. Wakefield, E. Holland, P. J. Dobson, and J. L. Hutchison, “Luminescence properties of nanocrystalline Y2O3:Eu,” Advanced Materials, vol. 13, no. 20, pp. 1557–1560, 2001.
[7]  H. Peng, H. Song, B. Chen et al., “Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3:Eu3+,” Journal of Chemical Physics, vol. 118, no. 7, pp. 3277–3282, 2003.
[8]  M. Yu, J. Lin, J. Fu, and Y. C. Han, “Sol–gel fabrication, patterning and photoluminescent properties of LaPO4:Ce3+, Tb3+ nanocrystalline thin films,” Chemical Physics Letters, vol. 371, no. 1-2, pp. 178–183, 2003.
[9]  K. A. Gschneidner Jr., J.-C. Bünzli, and V. K. Pecharsky, “Preface,” Handbook on the Physics and Chemistry of Rare Earths, vol. 39, pp. 5–8, 2009.
[10]  A. J. Silversmith, D. M. Boye, R. E. Anderman, and K. S. Brewer, “Fluorescence line narrowing and decay dynamics in sol-gel glasses containing Eu3+,” Journal of Luminescence, vol. 94-95, pp. 275–278, 2001.
[11]  L. F. Koao, H. C. Swart, E. Coetsee, M.-M. Biggs, and F. B. Dejene, “The effect of Mg2+ ions on the photoluminescence of Ce3+-doped silica,” Physica B, vol. 404, no. 22, pp. 4499–4503, 2009.
[12]  X.-C. Jiang, C.-H. Yan, L.-D. Sun, Z.-G. Wei, and C.-S. Liao, “Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties,” Journal of Solid State Chemistry, vol. 175, no. 2, pp. 245–251, 2003.
[13]  R. Reisfeld, A. Patra, G. Panczer, and M. Gaft, “Spectroscopic properties of cerium in sol-gel glasses,” Optical Materials, vol. 13, no. 1, pp. 81–88, 1999.
[14]  C. Guo, F. Gao, Y. Xu, L. Liang, F.G. Shi, and B. Yan, “Efficient red phosphors Na5Ln(MoO4)4:Eu3+ (Ln?=La, Gd and Y) for white LEDs,” Journal of Physics D, vol. 42, Article ID 095407, 2009.
[15]  L. D. Carlos, R. A. Sá Ferreira, V. de Zea Bermudez, C. Molina, L. A. Bueno, and S. J. L. Ribeiro, “White light emission of Eu3+-based hybrid xerogels,” Physical Review B, vol. 60, no. 14, pp. 10042–10053, 1999.
[16]  O. L. Malta and L. D. Carlos, “Intensities of 4f-4f transitions in glass materials,” Quimica Nova, vol. 26, no. 6, pp. 889–895, 2003.
[17]  A. J. Silversmith, N. T. T. Nguyen, B. W. Sullivan, D. M. Boye, C. Ortiz, and K. R. Hoffman, “Rare-earth ion distribution in sol-gel glasses co-doped with Al3+,” Journal of Luminescence, vol. 128, no. 5-6, pp. 931–933, 2008.
[18]  D. M. Boye, A. J. Silversmith, T. N. Nguyen, and K. R. Hoffman, “Effects of rehydration on Tb3+ spectroscopy in sol-gel glasses,” Journal of Non-Crystalline Solids, vol. 353, no. 24-25, pp. 2350–2354, 2007.
[19]  A. Monteil, S. Chaussedent, G. Alombert-Goget et al., “Clustering of rare earth in glasses, aluminum effect: experiments and modeling,” Journal of Non-Crystalline Solids, vol. 348, pp. 44–50, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133