全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Encapsulation of Berberine in Nano-Sized PLGA Synthesized by Emulsification Method

DOI: 10.5402/2012/187354

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanoparticles of PLGA (polylactide glycolic acid) were prepared using biodegradable poly (D, L-lactide-co-glycolide)—75?:?25, by emulsification method using PVA (Mol. Wt. 9000) or didodecyl dimethyl ammonium bromide (DMAB) as surfactant. Nanoparticles were morphologically characterized using scanning electron microscope (SEM) and particle size analyzer. The distribution of size of PLGA nanoparticles was in the range of 48–211?nm. Berberine, a yellow isoquinoline alkaloid that is used as traditional anticancer drug, was loaded on to PLGA nanoparticles by single emulsion as well as multiple emulsion solvent evaporation techniques. Particle size analysis showed an increase in berberine loaded PLGA NP size to 180–310?nm when PVA was used as a stabilizer. Whereas use of DMAB as a stabilizer led to precipitation. In vitro drug release analysis revealed that acidic pH of 5.5 was more suitable for release of berberine than pH?7.4. 1. Introduction Nanometals as well as organic nanoparticles (NP) as drug delivery devices is rapidly expanding area in drug delivery sciences. Organic polymer like polylactide glycolic acid (PLGA) has been used earlier as drug carrier because it is biocompatible as well as biodegradable [1, 2]. However, nowaday’s approaches are to use nano-sized PLGA as drug delivery vehicle. Tremendous opportunities exist for using nanoparticles as controlled drug delivery systems especially for cancer therapy so as to expose the patients with reduced doses [3–5]. Berberine, a naturally occurring isoquinoline alkaloid, is present in the roots, rhizome, and stem bark of a number of medicinal plants. Berberine has tremendous potential to cure many physiological disorders; hence, it has been used in the Ayurvedic [6], Unani, and Chinese as well as Homeopathic medicine. Berberine has been shown to inhibit activator protein 1, a key transcription factor in inflammation and carcinogenesis, in human cell lines [7] and has been shown to possess antitumor properties and effectively inhibit cyclooxygenase-2 transcriptional activity in human colon cancer cells [8, 9]. Berberine is known to inhibit DNA topoisomerase II [10]. Moreover, the antitumor properties of berberine are now recognized by researchers and clinical oncologists. The effects of berberine on human malignant brain tumor, esophageal cancer, and human leukemic and human colon cancer cell lines have been tested and significant killing effects have been achieved [1, 2, 11]. After looking into all these properties of Berberine, it was decided to try to encapsulate it in NP of PLGA for facilitated drug

References

[1]  L. F. Liu, “DNA topoisomerase poisons as antitumor drugs,” Annual Review of Biochemistry, vol. 58, pp. 351–375, 1989.
[2]  I. Bala, S. Hariharan, and M. N. V. R. Kumar, “PLGA nanoparticles in drug delivery: The state of the art,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 21, no. 5, pp. 387–422, 2004.
[3]  O. Kucuk, “Chemoprevention of prostate cancer,” Cancer and Metastasis Reviews, vol. 21, no. 2, pp. 111–124, 2002.
[4]  S. Barnes, “Role of phytochemicals in prevention and treatment of prostate cancer,” Epidemiologic Reviews, vol. 23, no. 1, pp. 102–105, 2001.
[5]  J. Cheng, B. A. Teply, I. Sherifi et al., “Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery,” Biomaterials, vol. 28, no. 5, pp. 869–876, 2007.
[6]  G. V. Sathyavathi, A. K. Gupta, N. Tandon, et al., Medicinal Plants of India, vol. 2, Indian Council of Medical Research, New Delhi, India, 1987.
[7]  K. Fukuda, Y. Hibiya, M. Mutoh, M. Koshiji, S. Akao, and H. Fujiwara, “Inhibition of activator protein 1 activity by berberine in human hepatoma cells,” Planta Medica, vol. 65, no. 4, pp. 381–383, 1999.
[8]  J. G. Lin, J. G. Chung, and L. T. Wu, “Effects of berberine on arylamine Nacetyl-transferase activity in human colon tumor cells,” The American Journal of Chinese Medicine, vol. 27, pp. 265–275, 1999.
[9]  K. Fukuda, Y. Hibiya, M. Mutoh, M. Koshiji, S. Akao, and H. Fujiwara, “Inhibition by berberine of cyclooxygenase-2 transcriptional activity in human colon cancer cells,” Journal of Ethnopharmacology, vol. 66, no. 2, pp. 227–233, 1999.
[10]  S. Szeto, C. M. N. Yow, and K. W. Fung, “Characterization of berberine on human cancer cells in culture,” Turkish Journal of Medical Sciences, vol. 32, no. 5, pp. 363–368, 2002.
[11]  A. M. Roy, M. S. Baliga, C. A. Elmets, and S. K. Katiyar, “Grape seed proanthocyanidins induce apoptosis through p53, bax, and caspase 3 pathways,” Neoplasia, vol. 7, no. 1, pp. 24–36, 2005.
[12]  P. Ahlin, J. Kristl, A. Kristl, and F. Vre?er, “Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration,” International Journal of Pharmaceutics, vol. 239, no. 1-2, pp. 113–120, 2002.
[13]  R. Jalil and J. R. Nixon, “Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: Problems associated with preparative techniques and release properties,” Journal of Microencapsulation, vol. 7, no. 3, pp. 297–325, 1990.
[14]  C. H. Chang, W. Y. Huang, C. H. Lai et al., “Development of novel nanoparticles shelled with heparin for berberine delivery to treat Helicobacter pylori,” Acta Biomaterialia, vol. 7, no. 2, pp. 593–603, 2011.
[15]  L. I. N. Aihua, L. I. Hongyan, L. I. U. Yiming, and Q. I. U. Xiaohui, “Preparation and release characteristics of berberine chitosan nanoparticles in vitro,” China Pharmacy, 2007.
[16]  Z.-H. Zhang, Y.-S. Sun, H. Pang, W. L. L. Munyendo, H.-X. Lv, and S.-L. Zhu, “Preparation and evaluation of berberine alginate beads for stomach-specific delivery,” Molecules, vol. 16, no. 12, pp. 10347–10356, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133