全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and Nanometrology

DOI: 10.5402/2012/234216

Full-Text   Cite this paper   Add to My Lib

Abstract:

Raman spectroscopy is a powerful tool to characterize the different types of sp2 carbon nanostructures, including two-dimensional graphene, one-dimensional nanotubes, and the effect of disorder in their structures. This work discusses why sp2 nanocarbons can be considered as prototype materials for the development of nanoscience and nanometrology. The sp2 nanocarbon structures are quickly introduced, followed by a discussion on how this field evolved in the past decades. In sequence, their rather rich Raman spectra composed of many peaks induced by single- and multiple-resonance effects are introduced. The properties of the main Raman peaks are then described, including their dependence on both materials structure and external factors, like temperature, pressure, doping, and environmental effects. Recent applications that are pushing the technique limits, such as multitechnique approach and in situ nanomanipulation, are highlighted, ending with some challenges for new developments in this field. 1. Introduction Raman spectroscopy is the inelastic scattering of light by matter, from molecules to crystals [1]. The effect is highly sensitive to the physical and chemical properties of the scattering material, as well as to any environmental effect that may change these properties. For this reason, the Raman spectroscopy is evolving into one of the most useful tools for the development of nanoscience and nanometrology. Raman spectrometers are widely available; the technique is relatively simple to perform, possible to carry out at room temperature and under ambient pressure, and requiring relatively simple or no specific sample preparation. Optical techniques (if not using high-energy photons) are nondestructive and noninvasive, as they use a massless and chargeless particle, the photon, as a probe, which is especially important for nanoscience due to the large surface-to-volume ratio in nanomaterials. Two-dimensional graphene, one-dimensional carbon nanotubes, and the related disordered materials, here all referred to as sp2 nanocarbons, are selected as the prototype materials to be discussed, first due to their importance to nanoscience and nanotechnology, second because their Raman spectra have been extremely useful in advancing our knowledge about these nanostructures. Nature shows that it is possible to manipulate matter and energy by assembling complex self-replicating carbon-based structures that are able to sustain life. On the other hand, carbon is the upstairs neighbor to silicon in the periodic table, with carbon having more flexible bonding and

References

[1]  V. Raman, The Molecular Scattering of Light, Nobel Lecture, 1930.
[2]  A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems, Wiley-VCH, Weinheim, Germany, 2011.
[3]  F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” Journal of Chemical Physics, vol. 53, no. 3, pp. 1126–1130, 1970.
[4]  R. Vidano and D. B. Fischbach, “New lines in the Raman spectra of carbons and graphite,” Journal of the American Ceramic Society, vol. 61, no. 1-2, pp. 13–17, 1978.
[5]  R. J. Nemanich and S. A. Solim, “First- and second-order Raman scattering from finite-size crystals of graphite,” Physical Review B, vol. 20, pp. 392–401, 1979.
[6]  M. S. Dresselhaus and R. Kalish, Ion Implantation in Diamond Graphite and Related Materials, Materials Science, Springer, Berlin, Germany, 1992.
[7]  M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic, New York, NY, USA, 1996.
[8]  A. Jorio, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Determination of nanotubes properties by Raman spectroscopy,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1824, pp. 2311–2336, 2004.
[9]  R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, “Raman spectroscopy of graphene and carbon nanotubes,” Advances in Physics, vol. 60, no. 3, pp. 413–550, 2011.
[10]  C. Castiglioni, M. Tommasini, and G. Zerbi, Philosophical Transactions of the Royal Society of London, vol. 362, pp. 2425–2459, 2004.
[11]  A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, pp. 14095–14107, 2000.
[12]  C. Thomsen and S. Reich, “Double resonant Raman scattering in graphite,” Physical Review Letters, vol. 85, pp. 5214–5217, 2000.
[13]  R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, “Probing phonon dispersion relations of graphite by double resonance Raman scattering,” Physical Review Letters, vol. 88, Article ID 027401, 4 pages, 2002.
[14]  A. M. Rao, A. Jorio, M. A. Pimenta et al., “Polarized Raman study of aligned multiwalled carbon nanotubes,” Physical Review Letters, vol. 84, no. 8, pp. 1820–1823, 2000.
[15]  A. Jorio, G. Dresselhaus, M. S. Dresselhaus et al., “Polarized Raman study of single-wall semiconducting carbon nanotubes,” Physical Review Letters, vol. 85, no. 12, pp. 2617–2620, 2000.
[16]  A. Jorio, M. A. Pimenta, A. G. Sousa Filho et al., “Resonance Raman spectra of carbon nanotubes by cross-polarized light,” Physical Review Letters, vol. 90, no. 10, p. 107403, 2003.
[17]  E. B. Barros, A. Jorio, G. G. Samsonidze et al., “Review on the symmetry-related properties of carbon nanotubes,” Physics Reports, vol. 431, no. 6, pp. 261–302, 2006.
[18]  A. Jorio, R. Saito, J. H. Hafner et al., “Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering,” Physical Review Letters, vol. 86, no. 6, pp. 1118–1121, 2001.
[19]  L. G. Can?ado, M. A. Pimenta, B. R. A. Neves et al., “Anisotropy of the Raman spectra of nanographite ribbons,” Physical Review Letters, vol. 93, no. 4, Article ID 047403, 1 pages, 2004.
[20]  A. G. Souza Filho, A. Jorio, A. K. Swan, et al., “Anomalous two-peak G'-band Raman effect in one isolated single-wall carbon nanotube,” Physical Review B, vol. 65, pp. 085417–085424, 2002.
[21]  A. C. Ferrari, J. C. Meyer, V. Scardaci et al., “Raman spectrum of graphene and graphene layers,” Physical Review Letters, vol. 97, no. 18, Article ID 187401, 2006.
[22]  A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Letters, vol. 6, no. 12, pp. 2667–2673, 2006.
[23]  A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Physical Review Letters, vol. 90, Article ID 95503, 4 pages, 2003.
[24]  N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chemical Physics Letters, vol. 376, no. 1-2, pp. 174–180, 2003.
[25]  N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, “Nanoscale vibrational analysis of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 127, no. 8, pp. 2533–2537, 2005.
[26]  A. Hartschuh, H. Qian, A. J. Meixner, N. Anderson, and L. Novotny, “Nanoscale optical imaging of excitons in single-walled carbon nanotubes,” Nano Letters, vol. 5, no. 11, pp. 2310–2313, 2005.
[27]  Y. Saito, N. Hayazawa, H. Kataura et al., “Polarization measurements in tip-enhanced Raman spectroscopy applied to single-walled carbon nanotubes,” Chemical Physics Letters, vol. 410, no. 1–3, pp. 136–141, 2005.
[28]  N. Anderson, A. Hartschuh, and L. Novotny, “Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy,” Nano Letters, vol. 7, no. 3, pp. 577–582, 2007.
[29]  I. O. Maciel, N. Anderson, M. A. Pimenta et al., “Electron and phonon renormalization near charged defects in carbon nanotubes,” Nature Materials, vol. 7, no. 11, pp. 878–883, 2008.
[30]  H. Qian, P. T. Araujo, C. Georgi et al., “Visualizing the local optical response of semiconducting carbon nanotubes to DNA-wrapping,” Nano Letters, vol. 8, no. 9, pp. 2706–2711, 2008.
[31]  L. G. Can?ado, A. Hartschuh, and L. Novotny, “Tip-enhanced Raman spectroscopy of carbon nanotubes,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1420–1426, 2009.
[32]  G. G. Hoffmann, G. de With, and J. Loos, “Micro-Raman and tip-enhanced Raman spectroscopy of carbon allotropes,” Macromolecular Symposia, vol. 265, no. 1, pp. 1–11, 2008.
[33]  Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, “Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1434–1440, 2009.
[34]  K. F. Domke and B. Pettinger, “Tip-enhanced Raman spectroscopy of 6H-SiC with graphene adlayers: selective suppression of E1 modes,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1427–1433, 2009.
[35]  V. Snitka, R. D. Rodrigues, and V. Lendraitis, “Novel gold cantilever for nano-Raman spectroscopy of graphene,” Microelectronic Engineering, vol. 88, no. 8, pp. 2759–2762, 2011.
[36]  J. Stadler, T. Schmid, and R. Zenobi, “Nanoscale chemical imaging of single-layer graphene,” ACS Nano, vol. 5, pp. 8442–8448, 2011.
[37]  L. G. Can?ado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “Influence of the atomic structure on the Raman spectra of graphite edges,” Physical Review Letters, vol. 93, Article ID 247401, 2004.
[38]  C. Casiraghi, A. Hartschuh, H. Qian et al., “Raman spectroscopy of graphene edges,” Nano Letters, vol. 9, no. 4, pp. 1433–1441, 2009.
[39]  M. Tommasini, C. Castiglioni, and G. Zerbi, “Raman scattering of molecular graphenes,” Physical Chemistry Chemical Physics, vol. 11, no. 43, pp. 10185–10194, 2009.
[40]  A. G. S. Filho, A. Jorio, G. G. Samsonidze, G. Dresselhaus, R. Saito, and M. S. Dresselhaus, “Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes,” Nanotechnology, vol. 14, no. 10, pp. 1130–1139, 2003.
[41]  P. Corio, A. Jorio, N. Demir, and M. S. Dresselhaus, “Spectro-electrochemical studies of single wall carbon nanotubes films,” Chemical Physics Letters, vol. 392, no. 4–6, pp. 396–402, 2004.
[42]  A. Jorio, A. G. Souza Filho, G. Dresselhaus, et al., “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes,” Physical Review B, vol. 65, p. 155412, 2002.
[43]  A. G. Souza Filho, A. Jorio, G. Dresselhaus et al., “Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes,” Physical Review B, vol. 65, Article ID 035404, 6 pages, 2001.
[44]  S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, “Kohn anomalies and electron-phonon interactions in graphite,” Physical Review Letters, vol. 93, no. 18, Article ID 185503, 4 pages, 2004.
[45]  A. Das, S. Pisana, B. Chakraborty et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nature Nanotechnology, vol. 3, no. 4, pp. 210–215, 2008.
[46]  M. Kalbac, L. Kavan, L. Dunsch, and M. S. Dresselhaus, “Development of the tangential mode in the Raman spectra of SWCNT bundles during electrochemical charging,” Nano Letters, vol. 8, no. 4, pp. 1257–1264, 2008.
[47]  J. S. Park, K. Sasaki, R. Saito et al., “Fermi energy dependence of the G -band resonance Raman spectra of single-wall carbon nanotubes,” Physical Review B, vol. 80, no. 8, Article ID 081402, 2009.
[48]  S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, “Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects,” Physical Review B, vol. 75, Article ID 035427, 22 pages, 2007.
[49]  T. M. G. Mohiuddin, A. Lombardo, R. R. Nair et al., “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation,” Physical Review B, vol. 79, no. 20, Article ID 205433, 8 pages, 2009.
[50]  E. Di Donato, M. Tommasini, C. Castiglioni, and G. Zerbi, “Assignment of the G+ and G- Raman bands of metallic and semiconducting carbon nanotubes based on a common valence force field,” Physical Review B, vol. 74, Article ID 184306, 12 pages, 2006.
[51]  C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects,” Physical Review Letters, vol. 93, no. 14, Article ID 147406, 4 pages, 2004.
[52]  H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality distribution and transition energies of carbon nanotubes,” Physical Review Letters, vol. 93, no. 17, Article ID 177401, 4 pages, 2004.
[53]  P. T. Araujo, S. K. Doorn, S. Kilina et al., “Third and fourth optical transitions in semiconducting carbon nanotubes,” Physical Review Letters, vol. 98, no. 6, Article ID 067401, 4 pages, 2007.
[54]  S. K. Doorn, P. T. Araujo, K. Hata, and A. Jorio, “Excitons and exciton-phonon coupling in metallic single-walled carbon nanotubes: resonance Raman spectroscopy,” Physical Review B, vol. 78, Article ID 165408, 9 pages, 2008.
[55]  R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, “Fine structure of the radial breathing mode of double-wall carbon nanotubes,” Physical Review B, vol. 72, no. 16, pp. 1–4, 2005.
[56]  J. Jiang, R. Saito, A. Grüneis et al., “Photoexcited electron relaxation processes in single-wall carbon nanotubes,” Physical Review B, vol. 71, no. 4, Article ID 045417, 9 pages, 2005.
[57]  J. Jiang, R. Saito, K. Sato et al., “Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes,” Physical Review B, vol. 75, no. 3, Article ID 035405, 2007.
[58]  P. T. Araujo, I. O. Maciel, P. B. C. Pesce et al., “Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes,” Physical Review B, vol. 77, no. 24, Article ID 241403, 2008.
[59]  P. T. Araujo, A. Jorio, M. S. Dresselhaus, K. Sato, and R. Saito, “Diameter dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes,” Physical Review Letters, vol. 103, Article ID 146802, 4 pages, 2009.
[60]  A. R. T. Nugraha, R. Saito, K. Sato, P. T. Araujo, A. Jorio, and M. S. Dresselhaus, “Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes,” Applied Physics Letters, vol. 97, Article ID 091905, 3 pages, 2010.
[61]  P. H. Tan, C. Y. Hu, J. Dong, W. C. Shen, and B. F. Zhang, “Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering,” Physical Review B, vol. 64, Article ID 214301, 12 pages, 2001.
[62]  E. J. Mele, “Commensuration and interlayer coherence in twisted bilayer graphene,” Physical Review B, vol. 81, Article ID 161405, 4 pages, 2010.
[63]  G. Li, A. Luican, J. M. B. Lopes Dos Santos et al., “Observation of Van Hove singularities in twisted graphene layers,” Nature Physics, vol. 6, no. 2, pp. 109–113, 2010.
[64]  W. Kohn and J. M. Luttinger, “New mechanism for superconductivity,” Physical Review Letters, vol. 15, no. 12, pp. 524–526, 1965.
[65]  T. M. Rice and G. K. Scott, “New Mechanism for a charge-density-wave instability,” Physical Review Letters, vol. 35, pp. 120–123, 1975.
[66]  M. Fleck, A. M. Ole?, and L. Hedin, “Magnetic phases near the Van Hove singularity in s- and d-band Hubbard models,” Physical Review B, vol. 56, pp. 3159–3166, 1997.
[67]  V. Carozo, C. M. Almeida, E. H. M. Ferreira, L. G. Can?ado, C. A. Achete, and A. Jorio, “Raman signature of graphene superlattices,” Nano Letters, vol. 11, pp. 4527–4534, 2011.
[68]  A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Physical Review B, vol. 82, Article ID 241406, 4 pages, 2010.
[69]  A. Righi, S. D. Costa, H. Chacham et al., “Graphene Moiré patterns observed by umklapp double-resonance Raman scattering,” Physical Review B, vol. 84, Article ID 241409, 4 pages, 2011.
[70]  R. Podila, R. Rao, R. Tsuchikawa, M. Ishigami, and A. M. Rao, “Raman spectroscopy of folded and scrolled graphene,” ACS Nano, vol. 6, no. 7, pp. 5784–5790, 2012.
[71]  Z. Ni, L. Liu, Y. Wang et al., “G -band Raman double resonance in twisted bilayer graphene: evidence of band splitting and folding,” Physical Review B, vol. 80, no. 12, Article ID 125404, 5 pages, 2009.
[72]  R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, “Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene,” Nano Letters, no. 12, pp. 3162–3167, 2012.
[73]  K. Kim, S. Coh, L. Z. Tan et al., “Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure,” Physical Review Letters, vol. 108, pp. 246103–246108, 2012.
[74]  S. Reich, C. Thomsen, and P. Ordejón, “Elastic properties of carbon nanotubes under hydrostatic pressure,” Physical Review B, vol. 65, Article ID 153407, 4 pages, 2002.
[75]  S. B. Cronin, A. K. Swan, M. S. ünlü, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, “Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes,” Physical Review Letters, vol. 93, pp. 167401–167405, 2004.
[76]  B. Gao, L. Jiang, X. Ling, J. Zhang, and Z. Liu, “Chirality-dependent Raman frequency variation of single-walled carbon nanotubes under uniaxial strain,” Journal of Physical Chemistry C, vol. 112, no. 51, pp. 20123–20125, 2008.
[77]  A. G. S. Filho, N. Kobayashi, J. Jiang et al., “Strain-induced interference effects on the resonance Raman cross section of carbon nanotubes,” Physical Review Letters, vol. 95, no. 21, Article ID 217403, 4 pages, 2005.
[78]  X. Yang, G. Wu, and J. Dong, “Structural transformations of double-walled carbon nanotube bundle under hydrostatic pressure,” Applied Physics Letters, vol. 89, pp. 113101–113103, 2006.
[79]  M. Yao, Z. Wang, B. Liu et al., “Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure,” Physical Review B, vol. 78, no. 20, Article ID 205411, 2008.
[80]  A. L. Aguiar, E. B. Barros, R. B. Capaz et al., “Pressure-induced collapse in double-walled carbon nanotubes: chemical and mechanical screening effects,” Journal of Physical Chemistry C, vol. 115, no. 13, pp. 5378–5384, 2011.
[81]  P. T. Araujo, N. M. B. Neto, H. Chacham et al., “In situ atomic force microscopy Tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes,” Nano Letters, vol. 12, no. 8, pp. 4110–4116, 2012.
[82]  M. M. Lucchese, F. Stavale, E. H. M. Ferreira et al., “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon, vol. 48, no. 5, pp. 1592–1597, 2010.
[83]  E. H. M. Ferreira, M. V. O. Moutinho, F. Stavale et al., “Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Physical Review B, vol. 82, no. 12, Article ID 125429, 2010.
[84]  L. G. Can?ado, R. Beams, and L. Novotny, “Optical measurement of the phase-breaking length in graphene,” http://arxiv.org/abs/0802.3709.
[85]  A. K. Gupta, T. J. Russin, H. R. Gutiérrez, and P. C. Eklund, “Probing graphene edges via Raman scattering,” ACS Nano, vol. 3, no. 1, pp. 45–52, 2009.
[86]  A. Jorio, M. M. Lucchese, F. Stavale et al., “Raman study of ion-induced defects in N -layer graphene,” Journal of Physics Condensed Matter, vol. 22, no. 33, Article ID 334204, 2010.
[87]  A. Jorio, M. M. Lucchese, F. Stavale, and C. A. Achete, “Raman spectroscopy study of Ar+ bombardment in highly oriented pyrolytic graphite,” Physica Status Solidi B, vol. 246, no. 11-12, pp. 2689–2692, 2009.
[88]  L. G. Can?ado, K. Takai, T. Enoki et al., “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy,” Applied Physics Letters, vol. 88, Article ID 163106, 3 pages, 2006.
[89]  L. G. Can?ado, A. Jorio, and M. A. Pimenta, “Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size,” Physical Review B, vol. 76, pp. 064304–064310, 2007.
[90]  L. G. Can?ado, A. Jorio, E. H. M. Ferreira et al., “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Letters, vol. 11, no. 8, pp. 3190–3196, 2011.
[91]  P. B. C. Pesce, P. T. Araujo, P. Nikolaev et al., “Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination,” Applied Physics Letters, vol. 96, Article ID 051910, 3 pages, 2010.
[92]  N. W. Kam, Z. Liu, and H. Dai, “Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing,” Journal of the American Chemical Society, vol. 127, no. 36, pp. 12492–12493, 2005.
[93]  K. Rege, G. Viswanathan, G. Zhu, A. Vijayaraghavan, P. M. Ajayan, and J. S. Dordick, “In vitro transcription and protein translation from carbon nanotube-DNA assemblies,” Small, vol. 2, no. 6, pp. 718–722, 2006.
[94]  Z. Zhang, X. Yang, Y. Zhang et al., “Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth,” Clinical Cancer Research, vol. 12, pp. 4933–4939, 2006.
[95]  R. Krajcik, A. Jung, A. Hirsch, W. Neuhuber, and O. Zolk, “Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes,” Biochemical and Biophysical Research Communications, vol. 369, no. 2, pp. 595–602, 2008.
[96]  M. S. Ladeira, V. A. Andrade, E. R. M. Gomes et al., “Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes,” Nanotechnology, vol. 21, no. 38, Article ID 385101, 2010.
[97]  M. F. Sim?es, “A Pré-História da Bacia Amaz?nica: 85 Uma tentativa de reconstitui??o,” in Cultura IndígEna, Textos e Catálogo, pp. 5–21, Semana do índio, Museu Goeldi, Brazil, 1982.
[98]  D. C. Kern, Geoquímica e Pedogeoquímica em sítios Arqueológicos com terra preta na Floresta Nacional de Caxiuan? [Ph.D. thesis], Universidade Federal do Pará, Belém, Brazil, 1996.
[99]  N. J. H. Smith, “Anthrosols and human carrying capacity in amazonia,” Annals of the Association of American Geographers, vol. 70, no. 4, pp. 553–566, 1980.
[100]  N. P. S. Falc?o, N. Comerford, and J. Lehmann, “Determining nutrient bioavailability of amazonian dark earth soils—methodological challenges,” in Amazonian Dark Earths, Origins, Properties, Management, J. Lehmann, D. C. Kern, B. Glaser, and W. I. Woods, Eds., pp. 255–270, Kluwer Academic Publishers, 2003.
[101]  B. Glaser, J. Lehmann, and W. Zech, “Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review,” Biology and Fertility of Soils, vol. 35, no. 4, pp. 219–230, 2002.
[102]  B. Glaser, “Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century,” Philosophical Transactions of the Royal Society A, vol. 362, pp. 187–196, 2007.
[103]  E. Marris, “Putting the carbon back: black is the new green,” Nature, vol. 442, pp. 624–626, 2006.
[104]  A. C. Blackmore, M. T. Mentis, and R. J. Scholes, “The origin and extent of nutrient-enriched patches within a nutrient- poor savanna in South Africa,” Journal of Biogeography, vol. 17, no. 4-5, pp. 463–470, 1990.
[105]  W. Zech, L. Haumaier, and R. Hempfling, “Ecological aspects of soil organic matter in tropical land use,” in Humic Substances in Soil and Crop Sciences: 15 Selected Readings., P. McCarthy, C. E. Clapp, R. L. Malcolm, and P. R. Bloom, Eds., pp. 187–202, American Society of Agronomy and Soil Science Society of America, Madison, Wis, USA, 1990.
[106]  A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Physical Review B, vol. 64, Article ID 075414, 13 pages, 2001.
[107]  K. Takai, M. Oga, H. Sato et al., “Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects,” Physical Review B, vol. 67, no. 21, Article ID 214202, pp. 2142021–21420211, 2003.
[108]  A. Jorio, J. Ribeiro-Soares, L. G. Can?ado et al., “Microscopy and spectroscopy analysis of carbon nanostructures in highly fertile Amazonian anthrosoils,” Soil and Tillage Research, vol. 122, pp. 61–66, 2012.
[109]  J. C. Charlier and G. M. Rignanese, “Electronic structure of carbon nanocones,” Physical Review Letters, vol. 86, no. 26 I, pp. 5970–5973, 2001.
[110]  S. P. Jordan and V. H. Crespi, “Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object,” Physical Review Letters, vol. 93, Article ID 255504, 4 pages, 2004.
[111]  N. Yang, G. Zhang, and B. Li, “Carbon nanocone: a promising thermal rectifier,” Applied Physics Letters, vol. 93, Article ID 243111, 3 pages, 2008.
[112]  M. Yudasaka, S. Iijima, and V. H. Crespi, “Single-wall carbon nanohorns and nanocones,” Topics in Applied Physics, vol. 111, pp. 605–629, 2008.
[113]  J. N. Coleman, M. Lotya, A. O'Neill et al., “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science, vol. 331, no. 6017, pp. 568–571, 2011.
[114]  B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
[115]  R. V. Gorbachev, I. Riaz, R. R. Nair et al., “Hunting for monolayer boron nitride: optical and Raman signatures,” Small, vol. 7, no. 4, pp. 465–468, 2011.
[116]  L. G. Can?ado, A. Jorio, A. Ismach, E. Joselevich, A. Hartschuh, and L. Novotny, “Mechanism of near-field Raman enhancement in one-dimensional systems,” Physical Review Letters, vol. 103, no. 18, Article ID 186101, 2009.
[117]  R. V. Maximiano, R. Beams, L. Novotny, A. Jorio, and L. G. Can?ado, “Mechanism of near-field Raman enhancement in two-dimensional systems,” Physical Review B, vol. 85, Article ID 235434, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133