Cross-linked polyethylene (XLPE) is commonly used in medium/high voltage insulation due to its excellent dielectric properties and acceptable thermomechanical properties. To improve both electrical and thermal properties to a point that would possibly avoid the need for crosslinking, nanoclay fillers can be added to polymer matrix to form nanocomposites materials. In this paper, PE/clay nanocomposites were processed by mixing a commercially available premixed polyethylene/O-MMT masterbatch into a polyethylene blend matrix containing 80 wt% low density polyethylene LDPE and 20 wt% high density polyethylene HDPE with and without compatibilizer using a corotating twin-screw extruder. Various characterization techniques were employed in this paper, including optical microscopy, AFM, TEM, TGA, DMTA, and dielectric breakdown measurements in order to understand the correlation between structure and short-term dielectric breakdown strength. 1. Introduction Polyethylene is the insulation dielectric material of choice because of its high dielectric strength coupled with low dielectric loss, in addition to lending itself to easy processing. Furthermore, this polymer can be extensively recycled, making it a suitable candidate for replacing its cross-linked counterpart, which has limited recyclability. With conventional composite material, the filler is large or micrometric in size. It has been reported that adding microfiller has a negative effect on dielectric breakdown strength [1] due to the enhancement of the electric field around the aggregated filler particles, leading to decreased breakdown strength. To overcome these limitations, nanocomposite was used as an alternative to replace conventional composite [1–15]. Adding a nanoparticle to the polymer matrix resulted in a decrease in the internal electric field due to the reduction in particle size [16]. It has also been suggested that adding nanoclay can significantly decrease charge accumulation, which leads to increase in dielectric breakdown strength [17]. In nanocomposites, the interface between the nanoclay and the polymer matrix is very large, compared to that of composite or microcomposite materials. Several authors have reported that interface region plays an essential role in improving the insulating performance of nanodielectric materials [18–24]. In this paper, a blend of 80?wt% of LDPE and 20?wt% of HDPE was used as a matrix. The nanocomposite was prepared by melt-compounding the polymer matrix with nanoclay filler using a corotating twin-screw extruder. Only a few studies have focused on the
References
[1]
Y. Shen, Y. Lin, M. Li, and C.-W. Nan, “High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer,” Advanced Materials, vol. 19, no. 10, pp. 1418–1422, 2007.
[2]
T. J. Lewis, “Interfaces are the dominant feature of dielectrics at the nanometric level,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 739–753, 2004.
[3]
Y. Sun, Z. Zhang, and C. P. Wong, “Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites,” Polymer, vol. 46, no. 7, pp. 2297–2305, 2005.
[4]
E. Tuncer, A. J. Rondinone, J. Woodward, I. Sauers, D. R. James, and A. R. Ellis, “Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics,” Applied Physics A: Materials Science and Processing, vol. 94, no. 4, pp. 843–852, 2009.
[5]
E. Tuncer, B. Nettelblad, and S. M. Guba?ski, “Non-Debye dielectric relaxation in binary dielectric mixtures (50-50): randomness and regularity in mixture topology,” Journal of Applied Physics, vol. 92, no. 8, pp. 4612–4624, 2002.
[6]
A. A. Vorob'ev, “Excitation and electrical breakdown of solid insulators,” Soviet Physics Journal, vol. 23, no. 5, pp. 382–386, 1980.
[7]
J. Artbauer, “Electric strength of polymers,” Journal of Physics D: Applied Physics, vol. 29, no. 2, pp. 446–456, 1996.
[8]
N. Venkatasubramanian, K. J. Wiacek, S. Fries-Carr, E. Fossum, and T. D. Dang, “High-temperature polymer dielectrics for capacitive energy-storage applications,” in Proceedings of the 5th International Symposium on Polyimides and Other High Temperature Polymers, p. 393, 2007.
[9]
A. Schneuwly, P. Gr?ning, L. Schlapbach, C. Irrgang, and J. Vogt, “Breakdown behavior of oil-impregnated polypropylene as dielectric in film capacitors,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 5, no. 6, pp. 862–868, 1998.
[10]
I. L. Hosier, A. S. Vaughan, and S. G. Swingler, “The effects of measuring technique and sample preparation on the breakdown strength of polyethlyene,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 3, pp. 353–361, 2002.
[11]
A. E. Job, N. Alves, M. Zanin et al., “Increasing the dielectric breakdown strength of poly(ethylene terephthalate) films using a coated polyaniline layer,” Journal of Physics D: Applied Physics, vol. 36, no. 12, pp. 1414–1417, 2003.
[12]
M. Ieda, “Dielectric breakdown process of polymers,” IEEE Transactions on Electrical Insulation, vol. 15, no. 3, pp. 206–224, 1979.
[13]
V. A. Zakrevskii, N. T. Sudar, A. Zaopo, and Y. A. Dubitsky, “Mechanism of electrical degradation and breakdown of insulating polymers,” Journal of Applied Physics, vol. 93, no. 4, pp. 2135–2139, 2003.
[14]
G. Chen and A. E. Davies, “The influence of defects on the short-term breakdown characteristics and long-term dc performance of LDPE insulation,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 3, pp. 401–407, 2000.
[15]
T. J. Lewis, “Nanometric dielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 5, pp. 812–825, 1994.
[16]
D. Ma, T. A. Hugener, R. W. Siegel et al., “Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites,” Nanotechnology, vol. 16, no. 6, pp. 724–731, 2005.
[17]
G. C. Montanari, D. Fabiani, F. Palmieri, D. Kaempfer, R. Thomann, and R. Mülhaupt, “Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 754–762, 2004.
[18]
C. D. Green, A. S. Vaughan, G. R. Mitchell, and T. Liu, “Structure property relationships in polyethylene/montmorillonite nanodielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, no. 1, pp. 134–143, 2008.
[19]
M. Hoyos, N. García, R. Navarro et al., “Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates,” Journal of Polymer Science B: Polymer Physics, vol. 46, no. 13, pp. 1301–1311, 2008.
[20]
J. Gao, N. Guo, Y. Liu et al., “Effect of compound technology on polyethylene/ montmorillonite composites,” in Proceedings of the 9th IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM '09), pp. 781–784, July 2009.
[21]
V. Tomer, G. Polizos, C. A. Randall, and E. Manias, “Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage,” Journal of Applied Physics, vol. 109, no. 7, Article ID 074113, 2011.
[22]
G. Junguo, Z. Jinmei, J. Quanquan, L. Jiayin, Z. Mingyan, and Z. Xiaohong, “Study on brekdown and paitial discharge of polyethylene/montmorillonite nanocomposites,” in Proceedings of the International Symposium on Electrical Insulating Materials (ISEIM '08), pp. 597–600, September 2008.
[23]
T. Tanaka, G. C. Montanari, and R. Mülhaupt, “Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 763–784, 2004.
[24]
E. David, M. Fréchette, B. Zazoum, C. Daran-Daneau, A. D. Ng?, and H. Couderc, “Dielectric properties of PE/clay nanocomposites,” Journal of Nanomaterials, vol. 2013, Article ID 703940, 11 pages, 2013.
[25]
A. Ranade, N. A. D'Souza, and B. Gnade, “Exfoliated and intercalated polyamide-imide nanocomposites with montmorillonite,” Polymer, vol. 43, no. 13, pp. 3759–3766, 2002.
[26]
J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Thérias, and J.-L. Gardette, “Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells,” Solar Energy Materials and Solar Cells, vol. 99, pp. 240–249, 2012.
[27]
S.-I. Hong and J.-W. Rhim, “Preparation and properties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion,” LWT—Food Science and Technology, vol. 48, no. 1, pp. 43–51, 2012.
[28]
B. Zazoum, E. David, and A. Ng?, “LDPE/HDPE/clay nanocomposites: effects of compatibilizer on the structure and dielectric response,” Journal of Nanotechnology, vol. 2013, Article ID 138457, 10 pages, 2013.
[29]
J. Morawiec, A. Pawlak, M. Slouf, A. Galeski, E. Piorkowska, and N. Krasnikowa, “Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites,” European Polymer Journal, vol. 41, no. 5, pp. 1115–1122, 2005.
[30]
S. P. Lonkar, S. Therias, F. Leroux, J.-L. Gardette, and R. P. Singh, “Thermal, mechanical, and rheological characterization of polypropylene/layered double hydroxide nanocomposites,” Polymer Engineering & Science, vol. 52, pp. 2006–2014, 2012.
[31]
G. S. Venkatesh, A. Deb, A. Karmarkar, and S. S. Chauhan, “Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites,” Materials and Design, vol. 37, pp. 285–291, 2012.
[32]
R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, “Interlayer structure and molecular environment of alkylammonium layered silicates,” Chemistry of Materials, vol. 6, no. 7, pp. 1017–1022, 1994.
[33]
W. Lertwimolnun and B. Vergnes, “Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix,” Polymer, vol. 46, no. 10, pp. 3462–3471, 2005.
[34]
J. K. Nelson and J. C. Fothergill, “Internal charge behaviour of nanocomposites,” Nanotechnology, vol. 15, no. 5, pp. 586–595, 2004.
[35]
M. Hoyos, N. García, R. Navarro et al., “Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates,” Journal of Polymer Science B: Polymer Physics, vol. 46, no. 13, pp. 1301–1311, 2008.