全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spin Relaxation in Germanium Nanowires

DOI: 10.5402/2012/207043

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use semiclassical Monte Carlo approach along with spin density matrix calculations to model spin polarized electron transport. The model is applied to germanium nanowires and germanium two-dimensional channels to study and compare spin relaxation between them. Spin dephasing in germanium occurs because of Rashba Spin Orbit Interaction (structural inversion asymmetry) which gives rise to the D’yakonov-Perel (DP) relaxation. In germanium spin flip scattering due to the Elliot-Yafet (EY) mechanism also leads to spin relaxation. The spin relaxation tests for both 1D and 2D channels are carried out at different values of temperature and driving electric field, and the variation in spin relaxation length is recorded. Spin relaxation length in a nanowire is found to be much higher than that in a 2D channel due to suppression of DP relaxation in a nanowire. At lower temperatures the spin relaxation length increases. This suggests that spin relaxation in germanium occurs slowly in a 1D channel (nanowires) and at lower temperatures. The electric field dependence of spin relaxation length was found to be very weak. 1. Introduction Of late, intensive experimental and theoretical studies have been conducted on the physics of electron spins due to the enormous promise displayed by the spin-based devices [1]. Spin transport in semiconductors has been continuously investigated due to the possibility of integration of spintronics with semiconductor technology. This integration has attracted huge research interest due to its prospects [2–5] in implementing novel devices that can operate at much less power levels and higher processing speeds. Spintronics-based devices thus promise highly improved performance over their contemporary electronic counterparts. The suitability of present semiconductor materials in spintronic-based applications needs to be established to bring about successful integration of the two and to be able to achieve the advantages listed above. The basic idea of the spintronic-based devices is to use the spin degree of freedom. At the source, information is encoded as spin state of individual electrons and is then injected into the material. During its motion in the material, the electrons undergo scattering and hence the electron spin states relax or depolarize as they move in the channel. This is the process of spin relaxation. Spin detection is done at the drain. Our paper here deals with the second process of spin relaxation in a material. Spin relaxation lengths or spin dephasing lengths represent the distance from the source in which the spin

References

[1]  A. Fert, “The present and the future of spintronics,” Thin Solid Films, vol. 517, no. 1, pp. 2–5, 2008.
[2]  I. ?uti?, J. Fabian, and S. D. Sarma, “Spintronics: fundamentals and applications,” Reviews of Modern Physics, vol. 76, no. 2, pp. 323–410, 2004.
[3]  S. Bandyopadhyay and M. Cahay, Introduction to Spintronics, CRC Press, 2008.
[4]  J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. ?uti?, “Semiconductor spintronics,” Acta Physica Slovaca, vol. 57, no. 4-5, pp. 565–907, 2007.
[5]  M. W. Wu, J. H. Jiang, and M. Q. Weng, “Spin dynamics in semiconductors,” Physics Reports, vol. 493, no. 2–4, pp. 61–236, 2010.
[6]  A. Kamra, B. Ghosh, and T. K. Ghosh, “Spin relaxation due to electron-electron magnetic interaction in high Lande g -factor semiconductors,” Journal of Applied Physics, vol. 108, no. 5, Article ID 054505, 2010.
[7]  D. H?gele, M. Oestreich, W. W. Rühle, N. Nestle, and K. Eberl, “Spin transport in GaAs,” Applied Physics Letters, vol. 73, no. 11, pp. 1580–1582, 1998.
[8]  L. Kong, G. Du, Y. Wang, J. Kang, R. Han, and X. Liu, “Simulation of spin-polarized transport in GaAs/GaAlAs quantum well considering intersubband scattering by the Monte Carlo method,” in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD '05), pp. 175–178, September 2005.
[9]  D. Sánchez, C. Gould, G. Schmidt, and L. W. Molenkamp, “Spin-polarized transport in II-VI magnetic resonant-tunneling devices,” IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 984–990, 2007.
[10]  C. Tahan and R. Joynt, “Rashba spin-orbit coupling and spin relaxation in silicon quantum wells,” Physical Review B, vol. 71, no. 7, pp. 1–7, 2005.
[11]  S. P. Dash, S. Sharma, R. S. Patel, M. P. De Jong, and R. Jansen, “Electrical creation of spin polarization in silicon at room temperature,” Nature, vol. 462, no. 7272, pp. 491–494, 2009.
[12]  S. Pramanik, S. Bandyopadhyay, and M. Cahay, “Spin transport in nanowires,” in Proceedings of the 3rd IEEE Conference on Nanotechnology, vol. 2, pp. 87–90, 2003.
[13]  A. Bournel, P. Dollfus, P. Bruno, and P. Hesto, “Spin polarized transport in 1D and 2D semiconductor heterostructures,” Materials Science Forum, vol. 297-298, pp. 205–212, 1999.
[14]  P. Logan and X. Peng, “Strain-modulated electronic properties of Ge nanowires: a first-principles study,” Physical Review B, vol. 80, no. 11, Article ID 115322, 2009.
[15]  S. Patibandla, S. Pramanik, S. Bandyopadhyay, and G. C. Tepper, “Spin relaxation in a germanium nanowire,” Journal of Applied Physics, vol. 100, no. 4, Article ID 044303, 2006.
[16]  E. S. Liu, J. Nah, K. M. Varahramyan, and E. Tutuc, “Lateral spin injection and large spin diffusion length in germanium,” Nano Letters, vol. 10, no. 9, pp. 3297–3302, 2010.
[17]  S. Patibandla, G. M. Atkinson, S. Bandyopadhyay, and G. C. Tepper, “Competing D'yakonov-Perel' and Elliott-Yafet spin relaxation in germanium,” Physica E, vol. 42, no. 5, pp. 1721–1726, 2010.
[18]  M. I. D’yakonov and V. I. Perel, “Spin relaxation of conduction electrons in noncentrosymmetric semiconductors,” Soviet Physics, vol. 13, no. 12, pp. 3023–3026, 1972.
[19]  G. L. Bir, A. G. Aronov, and G. E. Pikus, “Spin relaxation of electrons scattered by holes,” Soviet Physics, vol. 42, pp. 705–712, 1976.
[20]  R. J. Elliott, “Theory of the effect of spin-Orbit coupling on magnetic resonance in some semiconductors,” Physical Review, vol. 96, no. 2, pp. 266–279, 1954.
[21]  A. Martinez, R. Brown, and A. Asenov, “Full-band NEGF simulations of surface roughness in Si nanowires,” Journal of Physics, vol. 242, Article ID 012016, 2010.
[22]  C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Reviews of Modern Physics, vol. 55, no. 3, pp. 645–705, 1983.
[23]  C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, Springer, Vienna, Austria, 1989.
[24]  S. Saikin, M. Shen, M. C. Cheng, and V. Privman, “Semiclassical Monte Carlo model for in-plane transport of spin-polarized electrons in III-V heterostructures,” Journal of Applied Physics, vol. 94, no. 3, pp. 1769–1775, 2003.
[25]  A. Kumar, M. W. Akram, S. G. Dinda, and B. Ghosh, “Spin relaxation in silicon nanowires,” Journal of Computational and Theoretical Nanoscience, In press.
[26]  E. A. De Andrada E Silva, G. C. La Rocca, and F. Bassani, “Spin-split subbands and magneto-oscillations in III-V asymmetric heterostructures,” Physical Review B, vol. 50, no. 12, pp. 8523–8533, 1994.
[27]  W. Fawcett and E. G. S. Paige, “Negative differential mobility of electrons in germanium: a Monte Carlo calculation of the distribution function, drift velocity and carrier population in the (111) and (100) minima,” Journal of Physics C, vol. 4, no. 13, pp. 1801–1821, 1971.
[28]  P. H. Song and K. W. Kim, “Spin relaxation of conduction electrons in bulk III-V semiconductors,” Physical Review B, vol. 66, no. 3, Article ID 035207, pp. 352071–352078, 2002.
[29]  E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, “Electron transport in silicon nanowires: the role of acoustic phonon confinement and surface roughness scattering,” Journal of Applied Physics, vol. 104, no. 6, Article ID 063711, 2008.
[30]  J. Lee and H. N. Spector, “Impurity-limited mobility of semiconducting thin wire,” Journal of Applied Physics, vol. 54, no. 7, pp. 3921–3925, 1983.
[31]  R. Kotlyar, B. Obradovic, P. Matagne, M. Stettler, and M. D. Giles, “Assessment of room-temperature phonon-limited mobility in gated silicon nanowires,” Applied Physics Letters, vol. 84, no. 25, pp. 5270–5272, 2004.
[32]  P. J. Price, “Two-dimensional electron transport in semiconductor layers. I. Phonon scattering,” Annals of Physics, vol. 133, no. 2, pp. 217–239, 1981.
[33]  K. Yokoyama and K. Hess, “Monte carlo study of electronic transport in Al1-xGaxAs/GaAs single-well heterostructures,” Physical Review B, vol. 33, no. 8, pp. 5595–5606, 1986.
[34]  H. Tanimoto, N. Yasuda, K. Taniguchi, and C. Hamaguchi, “Monte Carlo study of hot electron transport in quantum wells,” Japanese Journal of Applied Physics, vol. 27, no. 4, pp. 563–571, 1988.
[35]  V. M. Polyakov and F. Schwierz, “Monte Carlo calculation of two-dimensional electron gas mobility in InN-based heterostructures,” Journal of Applied Physics, vol. 101, no. 3, Article ID 033703, 2007.
[36]  S. Pramanik, S. Bandyopadhyay, and M. Cahay, “Decay of spin-polarized hot carrier current in a quasi-one-dimensional spin-valve structure,” Applied Physics Letters, vol. 84, no. 2, pp. 266–268, 2004.
[37]  Y. Kunihashi, M. Kohda, and J. Nitta, “Enhancement of spin lifetime in gate-Fitted InGaAs Narrow wires,” Physical Review Letters, vol. 102, no. 22, Article ID 226601, 2009.
[38]  A. W. Holleitner, V. Sih, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Dimensionally constrained D'yakonov–Perel' spin relaxation in n-InGaAs channels: transition from 2D to 1D,” New Journal of Physics, vol. 9, article 342, 2007.
[39]  A. G. Mal'shukov and K. A. Chao, “Waveguide diffusion modes and slowdown of D'yakonov-Perel' spin relaxation in narrow two-dimensional semiconductor channels,” Physical Review B, vol. 61, no. 4, pp. R2413–R2416, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133