We report a low-temperature aqueous solution growth of uniformly aligned ZnO nanorod arrays on flexible substrates. The substrate is Indium Tin Oxide (ITO) film coated on polyethylene terephthalate (PET). Solutions with five different concentrations of the precursors with equimolar Zinc Nitrate and Hexamethylenetetramine (HMT) in distilled water were prepared to systematically study the effect of precursor solution concentration on the structural and optical properties of ZnO nanorods. It was concluded that the precursor concentration have great influence on the morphology, crystal quality, and optical property of ZnO nanorods. The diameter, density, and orientation of the nanorods are dependent on the precursor solution concentration. X-ray diffraction and micro-Raman spectroscopy showed that the ZnO nanorods with the highest concentration of 50?mM were highly aligned and have the highest level of surface coverage. It was also found that the diameter and length of the nanorods increases upon increasing precursor solution concentration. This is the first systematic investigation of studying the effect of precursor solution concentration on the quality of ZnO nanorods grown on ITO/PET substrates by low-temperature solution method. We believe that our work will contribute to the realization of flexible organic-inorganic hybrid solar cell based on ZnO nanorods and conjugated polymer. 1. Introduction Zinc oxide (ZnO) is a semiconductor with a wide direct band gap of 3.37?eV and a large exciton binding energy of 60?meV, which makes the material useful for optoelectronic application [1, 2]. Nanostructures of ZnO such as ZnO nanorods and nanowires have received increased attention due to their excellent electrical and optical properties [3]. Due to the high surface-to-volume ratio provided by the one-dimensional (1D) nanostructure, ZnO nanorod arrays are considered suitable to the application for hybrid photovoltaic devices [4–7]. In the past few years, ZnO nanorods have been synthesized via various physical and chemical methods including vapor phase synthesis [8–10], metalorganic chemical vapor deposition (MOCVD) [11–13], and solution-based synthesis [14–17]. Among these routes, solution-based method has the advantages of simplicity, low costs, low growth temperature, and easy coating of large surfaces Intensive research has been focused on the solution growth process of ZnO nanorods on ITO-coated glass substrates. Guo et al. [18] have systematically studied the effect of processing conditions such as pretreatment of the substrates, growth temperature,
References
[1]
A. Ohtomo, M. Kawasaki, Y. Sakurai et al., “Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE,” Materials Science and Engineering B, vol. 54, no. 1-2, pp. 24–28, 1998.
[2]
M. Godlewski, E. Guziewicz, K. Kopalko et al., “Zinc oxide for electronic, photovoltaic and optoelectronic applications,” Low Temperature Physics, vol. 37, no. 3, Article ID 009103LTP, pp. 235–240, 2011.
[3]
G. C. Yi, C. R. Wang, and W. I. Park, “ZnO nanorods: synthesis, characterization and applications,” Semiconductor Science and Technology, vol. 20, no. 4, pp. S22–S34, 2005.
[4]
K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, and K. Hashimoto, “Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices,” Journal of Physical Chemistry C, vol. 111, no. 19, pp. 7218–7223, 2007.
[5]
P. Ravirajan, A. M. Peiró, M. K. Nazeeruddin et al., “Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer,” Journal of Physical Chemistry B, vol. 110, no. 15, pp. 7635–7639, 2006.
[6]
C. Y. Chou, J. S. Huang, C. H. Wu, C. Y. Lee, and C. F. Lin, “Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 9, pp. 1608–1612, 2009.
[7]
D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, “Hybrid photovoltaic devices of polymer and ZnO nanofiber composites,” Thin Solid Films, vol. 496, no. 1, pp. 26–29, 2006.
[8]
B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation,” Applied Physics Letters, vol. 81, no. 4, pp. 757–759, 2002.
[9]
Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, “Synthesis and optical properties of tetrapod-like zinc oxide nanorods,” Chemical Physics Letters, vol. 358, no. 1-2, pp. 83–86, 2002.
[10]
A. J. Cheng, Y. Tzeng, Y. Zhou et al., “Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication,” Applied Physics Letters, vol. 92, no. 9, Article ID 092113, 3 pages, 2008.
[11]
W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Applied Physics Letters, vol. 80, no. 22, pp. 4232–4234, 2002.
[12]
X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 95, no. 6, pp. 3141–3147, 2004.
[13]
K. Ogata, K. Maejima, S. Z. Fujita, and S. G. Fujita, “Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy,” Journal of Crystal Growth, vol. 248, pp. 25–30, 2003.
[14]
Y. H. Ni, X. W. Wei, J. M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Materials Science and Engineering B, vol. 121, no. 1-2, pp. 42–47, 2005.
[15]
L. Fan, H. Song, T. Li et al., “Hydrothermal synthesis and photoluminescent properties of ZnO nanorods,” Journal of Luminescence, vol. 122-123, no. 1-2, pp. 819–821, 2007.
[16]
D. Polsongkram, P. Chamninok, S. Pukird et al., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B, vol. 403, no. 19-20, pp. 3713–3717, 2008.
[17]
H. Ahn, Y. Wang, S. H. Jee, M. Park, Y. S. Yoon, and D. J. Kim, “Enhanced UV activation of electrochemically doped Ni in ZnO nanorods for room temperature acetone sensing,” Chemical Physics Letters, vol. 511, no. 4–6, pp. 331–335, 2011.
[18]
M. Guo, P. Diao, and S. Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: dependence of morphology and alignment ordering upon preparing conditions,” Journal of Solid State Chemistry, vol. 178, no. 6, pp. 1864–1873, 2005.
[19]
C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Advanced Functional Materials, vol. 11, no. 1, pp. 15–26, 2001.
[20]
J. J. Kim, K. S. Kim, and G. Y. Jung, “Fabrication of flexible dye-sensitised solar cells with photoanodes composed of periodically aligned single crystalline vertical ZnO NRs by utilising a direct metal transfer method,” Journal of Materials Chemistry, vol. 21, no. 21, pp. 7730–7735, 2011.
[21]
A. Hu, F. Wu, J. Liu et al., “Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance,” Journal of Alloys and Compounds, vol. 507, no. 1, pp. 261–266, 2010.
[22]
H. Ahn, J.-H. Park, S.-B. Kim, S. H. Jee, Y. S. Yoon, and D.-J. Kim, “Vertically aligned ZnO nanorod sensor on flexible substrate for ethanol gas monitoring,” Electrochemical and Solid-State Letters, vol. 13, no. 11, pp. J125–J128, 2010.
[23]
N. Lepot, M. K. Van Bael, H. Van den Rul et al., “Synthesis of ZnO nanorods from aqueous solution,” Materials Letters, vol. 61, no. 13, pp. 2624–2627, 2007.
B. Lo, J. Y. Chang, A. V. Ghule, S. H. Tzing, and Y. C. Ling, “Seed-mediated fabrication of ZnO nanorods with controllable morphology and photoluminescence properties,” Scripta Materialia, vol. 54, no. 3, pp. 411–415, 2006.
[26]
A. Umar, B. Karunagaran, E.-K. Suh, and Y. B. Hahn, “Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation,” Nanotechnology, vol. 17, no. 16, pp. 4072–4077, 2006.
[27]
S. S. Hong, T. Joo, W. I. Park, Y. H. Jun, and G. C. Yi, “Time-resolved photoluminescence of the size-controlled ZnO nanorods,” Applied Physics Letters, vol. 83, no. 20, pp. 4157–4159, 2003.
[28]
Y. Sun, J. B. Ketterson, and G. K. L. Wong, “Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder,” Applied Physics Letters, vol. 77, no. 15, pp. 2322–2324, 2000.
[29]
Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” Journal of Physics, vol. 16, no. 25, pp. R829–R858, 2004.
[30]
H. J. Egelhaaf and D. Oelkrug, “Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO,” Journal of Crystal Growth, vol. 161, no. 1–4, pp. 190–194, 1996.
[31]
J. M. Calleja and M. Cardona, “Resonant Raman scattering in ZnO,” Physical Review B, vol. 16, no. 8, pp. 3753–3761, 1977.
[32]
H. C. Hsu, H. M. Cheng, C. Y. Wu, H. S. Huang, Y. C. Lee, and W. F. Hsieh, “Luminescence of selective area growth of epitaxial ZnO nanowires and random-growth-oriented nanobelts,” Nanotechnology, vol. 17, no. 5, pp. 1404–1407, 2006.
[33]
R. Cuscó, E. Alarcón-Lladó, J. Ibá?ez et al., “Temperature dependence of Raman scattering in ZnO,” Physical Review B, vol. 75, no. 16, Article ID 165202, 11 pages, 2007.
[34]
A. J. Cheng, Y. Tzeng, H. Xu et al., “Raman analysis of longitudinal optical phonon-plasmon coupled modes of aligned ZnO nanorods,” Journal of Applied Physics, vol. 105, no. 7, Article ID 073104, 7 pages, 2009.
[35]
E. Alarcón-Lladó, J. Ibá?ez, R. Cuscó et al., “Ultraviolet Raman scattering in ZnO nanowires: quasimode mixing and temperature effects,” Journal of Raman Spectroscopy, vol. 42, no. 2, pp. 153–159, 2011.
[36]
Y. Tong, Y. Liu, C. Shao et al., “Growth and optical properties of faceted hexagonal ZnO nanotubes,” Journal of Physical Chemistry B, vol. 110, no. 30, pp. 14714–14718, 2006.