全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Lead-Free Nanowire Composites for Energy Storage Applications

DOI: 10.5402/2012/151748

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is an increasing demand to improve the energy density of dielectric capacitors for satisfying the next generation material systems. One effective approach is to embed high dielectric constant inclusions such as lead zirconia titanate in polymer matrix. However, with the increasing concerns on environmental safety and biocompatibility, the need to expel lead (Pb) from modern electronics has been receiving more attention. Using high aspect ratio dielectric inclusions such as nanowires could lead to further enhancement of energy density. Therefore, this paper focuses on the development of a lead-free nanowire reinforced polymer matrix capacitor for energy storage application. Lead-free sodium niobate nanowires (NaNbO3) were synthesized using hydrothermal method, followed by mixing them with polyvinylidene fluoride (PVDF) matrix using a solution-casting method for nanocomposites fabrication. Capacitance and breakdown strength of the samples were measured to determine the energy density. The energy density of NaNbO3/PVDF composites was also compared with that of lead-containing (PbTiO3/PVDF) nanocomposites and previously developed Pb( )O3/PVDF composites to show the feasibility of replacing lead-containing materials. The energy density of NaNbO3/PVDF capacitor is comparable to those of lead-containing ones, indicating the possibility of expelling lead from high-energy density dielectric capacitors. 1. Introduction Electrical energy storage plays an important role in modern electronic devices such as stationary power systems, mobile devices, and pulse power applications [1]. The most common devices used for storing electrical energy are batteries and capacitors. Compared to batteries, capacitors typically have lower power density but can be charged/discharged very quickly and has a significantly higher range of operating voltage [2]. Currently, there are many types of capacitors in use, such as dielectric capacitors, electrolytic capacitors, and electric double layer capacitors (EDLC or supercapacitors) [3]. Among these, the dielectric capacitor is still the most widely used because of its low cost, easy processing capability, low dielectric loss, high operation voltage, and reliability. Within dielectric capacitors group, there are two main types of capacitors: polymer based and ceramic based [1]. Polymer-based capacitors are more widely used because of their high breakdown strength, lightweight, and easy processing capability [1]. To date, dielectric polymer film capacitors have been used for power electronics, power conditioning, and for pulse power

References

[1]  P. Barber, S. Balasubramanian, Y. Anguchamy et al., “Polymer composite and nanocomposite dielectric materials for pulse power energy storage,” Materials, vol. 2, pp. 1697–1733, 2009.
[2]  P. J. Grbovi?, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based controlled electric drives with braking and ride-through capability: overview and analysis,” IEEE Transactions on Industrial Electronics, vol. 58, no. 3, pp. 925–936, 2011.
[3]  Y. Zhang, H. Feng, X. Wu et al., “Progress of electrochemical capacitor electrode materials: a review,” International Journal of Hydrogen Energy, vol. 34, no. 11, pp. 4889–4899, 2009.
[4]  Y. Rao, S. Ogitani, P. Kohl, and C. P. Wong, “Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application,” Journal of Applied Polymer Science, vol. 83, no. 5, pp. 1084–1090, 2002.
[5]  P. Lehmann, “Overview of the electric launch activities at the French-German research Institute of Saint-Louis (ISL),” IEEE Transactions on Magnetics, vol. 39, no. 1, pp. 24–28, 2003.
[6]  T. Tanaka, G. C. Montanari, and R. Mülhaupt, “Polymer nanocomposites as dielectrics and electrical insulation—perspectives for processing technologies, material characterization and future applications,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 763–784, 2004.
[7]  Z. Tian, X. Wang, L. Shu et al., “Preparation of nano BaTiO3-based ceramics for multilayer ceramic capacitor application by chemical coating method,” Journal of the American Ceramic Society, vol. 92, no. 4, pp. 830–833, 2009.
[8]  M. Unruan, T. Sareein, J. Tangsritrakul et al., “Changes in dielectric and ferroelectric properties of Fe3+/Nb5+ hybrid-doped barium titanate ceramics under compressive stress,” Journal of Applied Physics, vol. 104, no. 12, Article ID 124102, 2008.
[9]  O. Guillon, J. Chang, S. Schaab, and S.-J. L. Kang, “Capacitance enhancement of doped barium titanate dielectrics and multilayer ceramic capacitors by a post-sintering thermo-mechanical treatment,” Journal of the American Ceramic Society, vol. 95, no. 7, pp. 2277–2281, 2012.
[10]  S. S. Ibrahim, A. A. Al Jaafari, and A. S. Ayesh, “Physical characterizations of three phase polycarbonate nanocomposites,” Journal of Plastic Film and Sheeting, vol. 27, no. 4, pp. 275–291, 2011.
[11]  L. Xie, X. Huang, C. Wu, and P. Jiang, “Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer,” Journal of Materials Chemistry, vol. 21, no. 16, pp. 5897–5906, 2011.
[12]  P. Kim, N. M. Doss, J. P. Tillotson et al., “High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer,” ACS Nano, vol. 3, no. 9, pp. 2581–2592, 2009.
[13]  Y. P. Mao, S. Y. Mao, Z.-G. Ye, Z. X. Xie, and L. S. Zheng, “Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites,” Journal of Applied Physics, vol. 108, no. 1, Article ID 014102, 2010.
[14]  Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hu, “Fundamentals, processes and applications of high-permittivity polymer-matrix composites,” Progress in Materials Science, vol. 57, no. 4, pp. 660–723, 2012.
[15]  L. Ni and X. M. Chen, “Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics,” Applied Physics Letters, vol. 91, no. 12, Article ID 122905, 2007.
[16]  A. Chen, K. Kamata, M. Nakagawa, T. Iyoda, H. Wang, and X. Li, “Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone),” Journal of Physical Chemistry B, vol. 109, no. 39, pp. 18283–18288, 2005.
[17]  D. K. Das-Gupta and K. Doughty, “Polymer-ceramic composite materials with high dielectric constants,” Thin Solid Films, vol. 158, no. 1, pp. 93–105, 1988.
[18]  C. Andrews, Y. Lin, and H. A. Sodano, “The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites,” Smart Materials and Structures, vol. 19, no. 2, Article ID 025018, 2010.
[19]  H. Tang, Y. Lin, C. Andrews, and H. A. Sodano, “Nanocomposites with increased energy density through high aspect ratio PZT nanowires,” Nanotechnology, vol. 22, no. 1, Article ID 015702, 2011.
[20]  J. H. Jung, M. Lee, J. I. Hong et al., “Lead-free NaNbO3 nanowires for high output piezoelectric nanogenerator,” ACS Nano, vol. 5, Article ID 10041, 2011.
[21]  J. Wang, C. S. Sandu, and N. Setter, “Large-scale fabrication of titanium-rich perovskite PZT submicro/nano wires and their electromechanical properties,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 9, pp. 1813–1819, 2009.
[22]  ASTM Standard D149-09, “Standard test method for dielectric breakdown voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies,” Research Report, ASTM International, West Conshohocken, Pa, USA, 2009.
[23]  H. Shi, X. Li, D. Wang, Y. Yuan, Z. Zou, and J. Ye, “NaNbO3 nanostructures: facile synthesis, characterization, and their photocatalytic properties,” Catalysis Letters, vol. 132, no. 1-2, pp. 205–212, 2009.
[24]  T. Y. Ke, H. A. Chen, H. S. Sheu et al., “Sodium niobate nanowire and its piezoelectricity,” Journal of Physical Chemistry C, vol. 112, no. 24, pp. 8827–8831, 2008.
[25]  X. Lu, D. Zhang, Q. Zhao, C. Wang, W. Zhang, and Y. Wei, “Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires,” Macromolecular Rapid Communications, vol. 27, no. 1, pp. 76–80, 2006.
[26]  Z. Cai, X. Xing, R. Yu, X. Sun, and G. Liu, “Morphology-controlled synthesis of lead titanate powders,” Inorganic Chemistry, vol. 46, pp. 7423–7427, 2007.
[27]  B. Chu, X. Zhou, K. Ren et al., “A dielectric polymer with high electric energy density and fast discharge speed,” Science, vol. 313, no. 5785, pp. 334–336, 2006.
[28]  V. V. Varadan, Y. R. Roh, V. K. Varadan, and R. H. Tancrell, “Measurement of all the elastic and dielectric constants of poled PVDF films,” in Proceedings of the IEEE Ultrasonics Symposium, vol. 2, pp. 727–730, October 1989.
[29]  Y. I. Yuzyuk, P. Simon, E. Gagarina et al., “Modulated phases in NaNbO3: Raman scattering, synchrotron x-ray diffraction, and dielectric investigations,” Journal of Physics Condensed Matter, vol. 17, no. 33, pp. 4977–4990, 2005.
[30]  V. Shanker, S. L. Samal, G. K. Pradhan, C. Narayana, and A. K. Ganguli, “Nanocrystalline NaNbO3 and NaTaO3: rietveld studies, Raman spectroscopy and dielectric properties,” Solid State Sciences, vol. 11, no. 2, pp. 562–569, 2009.
[31]  Y. Hu, H. Gu, W. Chen, and Y. Wang, “Preparation of PbTiO3 nanoceramics based on hydrothermal nanopowders and characterization of their electrical properties,” Materials Chemistry and Physics, vol. 121, no. 1-2, pp. 10–13, 2010.
[32]  K. M. Slenes, P. Winsor, T. Scholz, and M. Hudis, “Pulse power capability of high energy density capacitors based on a new dielectric material,” IEEE Transactions on Magnetics, vol. 37, no. 1, pp. 324–327, 2001.
[33]  Q. Li, T. Zhao, and W. H. Siew, “Definition and digital algorithms of dielectric loss factor for condition monitoring of high-voltage power equipment with harmonics emphasis,” IEE Proceedings Generation, Transmission and Distribution, vol. 152, no. 3, pp. 309–312, 2005.
[34]  H. Tang, Y. Lin, and H. A. Sodano, “Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly,” Advanced Energy Materials, vol. 2, no. 4, pp. 469–476, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133