全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Optical Characterization of Mg1-xNixO Nanostructures

DOI: 10.5402/2012/865373

Full-Text   Cite this paper   Add to My Lib

Abstract:

An attempt has been made here to synthesize nano-powders via sol-gel process. These powders are shown to possess an f.c.c. (NaCl-type) structure with a typical lattice parameter of ?? for when decomposition of dried oxalate gel product is carried out at 600°C for 2?h in air. Moreover, they exhibit (i) clusters/agglomerates of nanosize particles and (ii) high BET specific surface area (123.0–135.5?m2/g). Also, the infrared absorption spectra reveal their strong affinity to water. The UV-Vis absorption peaks appearing at ~202?nm, 296?nm, and 379?nm are associated with oxygen defect centres and correspond to the electronic transitions (i) ( , , or ), (ii) ( , or ) and (iii) ( ), respectively. The incorporation of Ni2+ ions causes some modifications in the energy levels and the optical absorbance characteristics. The suppression of a strong broad emission peak at 440?nm and improvement of a weak band at 400?nm in the photoluminescence (PL) spectrum arise due to decrease in population density of centres (or F+ dimmers) and emergence of additional F+ centres, respectively with increase in nickel content. 1. Introduction Magnesium oxide (MgO) exhibits an f.c.c. (NaCl-type) crystal structure, high thermal stability, predominantly ionic nature, and insulating behaviour [1]. MgO has been extensively used in catalysis, toxic waste remediation, antibacterial materials, refractories, paints, and superconductors due to its unique optical, electronic, magnetic, thermal, mechanical, and chemical properties [2–8]. Recently, it has found promising application in plasma display panels [9]. Of particular interest is MgO nanopowder because of inherent size effects, for example, large surface area-to-volume ratio [10]. Various investigations have been undertaken earlier on its optical and electrical properties [2, 8, 11]. Surface anions with low coordination, considered to be chemically active sites, form excitons and give rise to specific optical transitions in the UV range [5, 8]. The processes usually used to synthesize MgO nanopowders include thermal evaporation, flame spray pyrolysis, laser vaporization, chemical gas phase deposition, combustion, aqueous wet chemical, vapor-phase transport, sol-gel, and hydrothermal reaction [5, 8, 12–15]. The incorporation of another element into a parent phase (i.e., oxide matrix) leads to crystal defects (e.g., vacancies, interstitials, and antisites) which, in turn, can modify the useful characteristics [16, 17]. Recently, interest arose in transition metal and rare earth-doped oxides mainly due to their excellent luminescence

References

[1]  R. Riedel and I.-W. Chen, Ceramics Science and Technology: Materials and Properties, vol. 2, Wiley-VCH, Weinheim, Germany, 2010.
[2]  N. A. Vasil'eva and N. F. Uvarov, “Electrical conductivity of magnesium oxide as a catalyst for radical chain hydrocarbon pyrolysis reactions,” Kinetics and Catalysis, vol. 52, no. 1, pp. 98–103, 2011.
[3]  S. A. El-Molla, S. M. Abdel-all, and M. M. Ibrahim, “Influence of precursor of MgO and preparation conditions on the catalytic dehydrogenation of iso-propanol over CuO/MgO catalysts,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 280–285, 2009.
[4]  M. A. Shah and F. M. Al-Marzouki, “Bio-safe approach for the preparation of magnesium oxide (MgO) nanoflowers at very low temperature,” International Journal of Biomedical Nanoscience and Nanotechnology, vol. 1, pp. 10–16, 2010.
[5]  A. Kumar and J. Kumar, “On the synthesis and optical absorption studies of nano-size magnesium oxide powder,” Journal of Physics and Chemistry of Solids, vol. 69, no. 11, pp. 2764–2772, 2008.
[6]  A. A. Yar, M. Montazerian, H. Abdizadeh, and H. R. Baharvandi, “Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 400–404, 2009.
[7]  S. H. Tamboli, V. Puri, and R. K. Puri, “Improvement in adhesion and decrease in stress of MgO thin films due to vapour chopping,” Journal of Alloys and Compounds, vol. 503, no. 1, pp. 224–227, 2010.
[8]  A. Kumar, S. Thota, S. Varma, and J. Kumar, “Sol-gel synthesis of highly luminescent magnesium oxide nanocrystallites,” Journal of Luminescence, vol. 131, no. 4, pp. 640–648, 2011.
[9]  J.-S. Choi, S.-H. Moon, J.-H. Kim, and G.-H. Kim, “The effects of high purity MgO nano-powders on the electrical properties of AC-PDPs,” Current Applied Physics, vol. 10, no. 6, pp. 1378–1382, 2010.
[10]  A. M. E. Raj, T. Som, V. Ganesan et al., “Tailoring optical and electrical properties of MgO thin films by 1.5?MeV H+ implantation to fluences,” Nuclear Instruments and Methods in Physics Research B, vol. 266, no. 11, pp. 2564–2571, 2008.
[11]  L. A. Ma, Z. X. Lin, J. Y. Lin, Y. A. Zhang, L. Q. Hu, and T. L. Guo, “Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties,” Physica E, vol. 41, no. 8, pp. 1500–1503, 2009.
[12]  J. H. Zhang, X. L. Zhou, and J. A. Wang, “Water promotion or inhibition effect on isopropanol decomposition catalyzed with a sol-gel MgO-Al2O3 catalyst,” Journal of Molecular Catalysis A, vol. 247, no. 1-2, pp. 222–226, 2006.
[13]  F. Gu, C. Li, H. Cao et al., “Crystallinity of Li-doped MgO:Dy3+ nanocrystals via combustion process and their photoluminescence properties,” Journal of Alloys and Compounds, vol. 453, no. 1-2, pp. 361–365, 2008.
[14]  L.-Z. Peia, L.-Z. Yinb, J.-F. Wanga, J. Chena, C.-G. Fana, and Q.-F. Zhanga, “Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process,” Materials Research, vol. 13, no. 3, pp. 339–343, 2010.
[15]  M. Nusheh, H. Yoozbashizadeh, M. Askari, H. Kobatake, and H. Fukuyama, “Mechanically activated synthesis of single crystalline MgO nanostructures,” Journal of Alloys and Compounds, vol. 506, no. 2, pp. 715–720, 2010.
[16]  J. Narayan, S. Nori, D. K. Pandya, D. K. Avasthi, and A. I. Smirnov, “Defect dependent ferromagnetism in MgO doped with Ni and Co,” Applied Physics Letters, vol. 93, no. 8, Article ID 082507, 2008.
[17]  W. Wang, X. Qiao, J. Chen, and F. Tan, “Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method,” Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 542–546, 2008.
[18]  F. Gu, S. F. Wang, M. K. Lü et al., “Combustion synthesis and luminescence properties of Dy3+-doped MgO nanocrystals,” Journal of Crystal Growth, vol. 260, no. 3-4, pp. 507–510, 2004.
[19]  W. Wang, X. Qiao, J. Chen, F. Tan, and H. Li, “Influence of titanium doping on the structure and morphology of MgO prepared by coprecipitation method,” Materials Characterization, vol. 60, no. 8, pp. 858–862, 2009.
[20]  L. G. Ferguson and F. Dogan, “Spectral analysis of transition metal-doped MgO “matched emitters” for thermophotovoltaic energy conversion,” Journal of Materials Science, vol. 37, no. 7, pp. 1301–1308, 2002.
[21]  S. Basu, Y.-B. Chen, and Z. M. Zhang, “Microscale radiation in thermophotovoltaic devices—a review,” International Journal of Energy Research, vol. 31, no. 6-7, pp. 689–716, 2007.
[22]  A. Kumar and J. Kumar, “Perspective on europium activated fine-grained metal molybdate phosphors for solid state illumination,” Journal of Materials Chemistry, vol. 21, no. 11, pp. 3788–3795, 2011.
[23]  T. Yoshida, T. Tanaka, H. Yoshida, T. Funabiki, and S. Yoshida, “Study on the dispersion of nickel ions in the NiO-MgO system by x-ray absorption fine structure,” Journal of Physical Chemistry, vol. 100, no. 6, pp. 2302–2309, 1996.
[24]  F. Arena, A. L. Chuvilin, and A. Parmaliana, “Characterization of Li-doped Ni/MgO catalysts,” Journal of Physical Chemistry, vol. 99, no. 3, pp. 990–998, 1995.
[25]  S. Bhatia, N. A. Binti Mohd Zabidi, and M. H. A. R. Bin Megat Ahmad, “Catalytic activity and morphological properties of Ni/MgO catalysts for the oxidative coupling of methane,” Reaction Kinetics and Catalysis Letters, vol. 74, no. 1, pp. 87–92, 2001.
[26]  M. H. Lee and D. G. Park, “Preparation of MgO with high surface area, and modification of its pore characteristics,” Bulletin of the Korean Chemical Society, vol. 24, no. 10, pp. 1437–1443, 2003.
[27]  L. Delle Site, A. Alavi, and R. M. Lynden-Bell, “The structure and spectroscopy of monolayers of water on MgO: an ab initio study,” Journal of Chemical Physics, vol. 113, no. 8, pp. 3344–3350, 2000.
[28]  K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, London, UK, 1963.
[29]  A. Kumar and J. Kumar, “Defect and adsorbate induced infrared modes in sol-gel derived magnesium oxide nano-crystallites,” Solid State Communications, vol. 147, no. 9-10, pp. 405–408, 2008.
[30]  M. A. Shah and A. Qurashi, “Novel surfactant-free synthesis of MgO nanoflakes,” Journal of Alloys and Compounds, vol. 482, no. 1-2, pp. 548–551, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133