Characterization of Histone H2A Derived Antimicrobial Peptides, Harriottins, from Sicklefin Chimaera Neoharriotta pinnata (Schnakenbeck, 1931) and Its Evolutionary Divergence with respect to CO1 and Histone H2A
Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates. 1. Introduction Antimicrobial peptides (AMPs) are ubiquitous and multipotent components of humoral innate immune response of most living organisms against invasion by pathogens [1]. The characteristics of naturally occurring AMPs, such as relatively small size (12–50 amino acids), cationicity, and amphipathicity allow them to interact with and penetrate into the membranes by the formation of transmembrane ion permeable pores or by a detergent-like manner, resulting in the leakage of the cytoplasmic components and cell death [2]. In the last two decades a considerable number of gene coded AMPs, either inducible or constitutive, with broad spectrum activity against different types of pathogens, have been reported from wide range of organisms, and their significance in innate immunity is becoming more and more appreciated. The specific immune mechanisms in the primeval vertebrates such as fish are less developed than those of higher vertebrates [3, 4] and are limited by temperature restraints on their metabolism [5]. Therefore, fish rely highly on their innate immune mechanisms for protection against invading pathogens and this makes them a potential candidate for antimicrobial peptide research. Histone derived antimicrobial peptides form an important category of AMPs and is reported from a number of vertebrates and invertebrates [6]. N-terminus of histone H2A is rich in basic amino acids, a characteristic which allows histone H2A to act as a precursor for antimicrobial peptides [7]. In case of marine fishes AMPs
References
[1]
P. Bulet, C. Hetru, J. Dimarcq, and D. Hoffmann, “Antimicrobial peptides in insects; structure and function,” Developmental and Comparative Immunology, vol. 23, no. 4-5, pp. 329–344, 1999.
[2]
Z. Jiang, A. I. Vasil, J. D. Hale, R. E. W. Hancock, M. L. Vasil, and R. S. Hodges, “Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides,” Biopolymers, vol. 90, no. 3, pp. 369–383, 2008.
[3]
A. E. Ellis, “Non-specific defense mechanisms in fish and their role in disease processes,” Developments in Biological Standardization, vol. 49, pp. 337–352, 1974.
[4]
M. J. Manning, “Immune defence systems,” in Biology of Farmed Fish, K. D. Blanck and A. D. Pickering, Eds., pp. 180–221, Sheffield Academic Press, Sheffield, UK, 1998.
[5]
J. E. Bly and L. W. Clem, “Temperature-mediated processes in teleost immunity: in vitro immunosuppression induced by in vivo low temperature in channel catfish,” Veterinary Immunology and Immunopathology, vol. 28, no. 3-4, pp. 365–377, 1991.
[6]
H. Kawasaki and S. Iwamuro, “Potential roles of histones in host defense as antimicrobial agents,” Infectious Disorders, vol. 8, no. 3, pp. 195–205, 2008.
[7]
C. Li, L. Song, J. Zhao et al., “Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri,” Fish and Shellfish Immunology, vol. 22, no. 6, pp. 663–672, 2007.
[8]
I. Y. Park, C. B. Park, M. S. Kim, and S. C. Kim, “Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus,” FEBS Letters, vol. 437, no. 3, pp. 258–262, 1998.
[9]
R. C. Richards, D. B. O'Neil, P. Thibault, and K. V. Ewart, “Histone H1: an antimicrobial protein of Atlantic salmon (Salmo salar),” Biochemical and Biophysical Research Communications, vol. 284, no. 3, pp. 549–555, 2001.
[10]
G. A. Birkemo, T. Lüders, ?. Andersen, I. F. Nes, and J. N. Meyer, “Hipposin, a histone-derived antimicrobial peptide in Atlantic halibut (Hippoglossus hippoglossus L.),” Biochimica et Biophysica Acta, vol. 1646, no. 1-2, pp. 207–215, 2003.
[11]
J. M. O. Fernandes, G. D. Kemp, G. M. Molle, and V. J. Smith, “Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss,” Biochemical Journal, vol. 368, no. 2, pp. 611–620, 2002.
[12]
N. Sathyan, R. Philip, E. R. Chaithanya, P. R. A. Kumar, and S. P. Antony, “Identification of a histone derived, putative antimicrobial peptide Himanturin from round whip ray Himantura pastinacoides and its phylogenetic significance,” Results in Immunology, vol. 2, pp. 120–124, 2012.
[13]
E. R. Chaithanya, R. Philip, N. Sathyan, and P. R. A. Kumar, “Molecular characterization and phylogenetic analysis of a histone-derived antimicrobial peptide teleostin from the marine teleost fishes, Tachysurus jella and Cynoglossus semifasciatus,” ISRN Molecular Biology, vol. 2013, Article ID 185807, 7 pages, 2013.
[14]
S. A. Patat, R. B. Carnegie, C. Kingsbury, et al., “Antimicrobial activity of histones from hemocytes of the Pacific white shrimp,” European Journal of Biochemistry, vol. 271, no. 23-24, pp. 4825–4833, 2004.
[15]
N. Sathyan, R. Philip, E. R. Chaithanya, P. R. A. Kumar, S. P. Antony, and I. S. B. Singh, “Identification of a histone derived, putative antimicrobial peptide sunettin from marine clam Sunetta scripta,” Blue Biotechnology Journal, vol. 1, no. 3, pp. 397–403, 2012.
[16]
N. Sathyan, R. Philip, E. R. Chaithanya, and P. R. A. Kumar, “Identification and molecular characterization of molluskin, a histone-H2A-derived antimicrobial peptide from molluscs,” ISRN Molecular Biology, vol. 2012, Article ID 219656, 6 pages, 2012.
[17]
O. Folmer, M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek, “DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates,” Molecular Marine Biology and Biotechnology, vol. 3, no. 5, pp. 294–299, 1994.
[18]
N. Guex and M. C. Peitsch, “SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling,” Electrophoresis, vol. 18, no. 15, pp. 2714–2723, 1997.
[19]
T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, “SWISS-MODEL: an automated protein homology-modeling server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3381–3385, 2003.
[20]
K. Arnold, L. Bordoli, J. Kopp, and T. Schwede, “The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling,” Bioinformatics, vol. 22, no. 2, pp. 195–201, 2006.
[21]
H. S. Kim, H. Yoon, I. Minn et al., “Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I,” The Journal of Immunology, vol. 165, no. 6, pp. 3268–3274, 2000.
[22]
J. H. Cho, I. Y. Park, H. S. Kim, W. T. Lee, M. S. Kim, and S. C. Kim, “Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish,” The FASEB Journal, vol. 16, no. 3, pp. 429–431, 2002.
[23]
C. B. Park, M. S. Kim, and S. C. Kim, “A novel antimicrobial peptide from Bufo bufo gargarizans,” Biochemical and Biophysical Research Communications, vol. 218, no. 1, pp. 408–413, 1996.
[24]
J. H. Cho, B. H. Sung, and S. C. Kim, “Buforins: histone H2A-derived antimicrobial peptides from toad stomach,” Biochimica et Biophysica Acta, vol. 1788, no. 8, pp. 1564–1569, 2009.
[25]
S. Kobayashi, K. Takeshima, C. B. Park, S. C. Kim, and K. Matsuzaki, “Interactions of the novel anfimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor,” Biochemistry, vol. 39, no. 29, pp. 8648–8654, 2000.
[26]
C. B. Park, K. S. Yi, K. Matsuzaki, M. S. Kim, and S. C. Kim, “Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 15, pp. 8245–8250, 2000.
[27]
E. T. Uyterhoeven, C. H. Butler, D. Ko, and D. E. Elmore, “Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II,” FEBS Letters, vol. 582, no. 12, pp. 1715–1718, 2008.
[28]
G. S. Yi, C. B. Park, S. C. Kim, and C. Cheong, “Solution structure of an antimicrobial peptide buforin II,” FEBS Letters, vol. 398, no. 1, pp. 87–90, 1996.
[29]
D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochimica et Biophysica Acta, vol. 1778, no. 2, pp. 357–375, 2008.
[30]
H. S. Lee, C. B. Park, J. M. Kim et al., “Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,” Cancer Letters, vol. 271, no. 1, pp. 47–55, 2008.
[31]
K. Takeshima, A. Chikushi, K. K. Lee, S. Yonehara, and K. Matsuzaki, “Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes,” The Journal of Biological Chemistry, vol. 278, no. 2, pp. 1310–1315, 2003.