The Tousled-like kinases (TLKs) function in processes of chromatin assembly, including replication, transcription, repair, and chromosome segregation. TLKs interact specifically (and phosphorylate) with the chromatin assembly factor Asf1, a histone H3-H4 chaperone, histone H3 itself at Ser10, and also Rad9, a key protein involved in DNA repair and cell cycle signaling following DNA damage. These interactions are believed to be responsible for the action of TLKs in double-stranded break repair and radioprotection and also in the propagation of the DNA damage response. Hence, I propose that TLKs play key roles in maintenance of genome integrity in many organisms of both kingdoms. In this paper, I highlight key issues of the known roles of these proteins, particularly in the context of DNA repair (IR and UV), their possible relevance to genome integrity and cancer development, and as possible targets for intervention in cancer management. 1. General Information on Tousled-Like Kinases The Tousled locus was originally identified in A. thaliana and Antirrhinum majus during a study of mutations leading to defects in meristem expansion. Mutations of Tousled produce a complex phenotype characterized by specific defects in development of leaf and floral organs [1]. This was proposed to be linked to a replicative defect during organogenesis, but it may also result from failure to protect the genomefrom DNA damage [2, 3], resulting in developmental aberrations [4, 5]. Highly related Tousled-like genes can be found in many organisms in both kingdoms, several of which encode multiple transcripts resulting in different protein isoforms [6]. It was originally proposed that Tousled (TSL) may be a component in a signal transduction pathway controlling cell proliferation and DNA synthesis during organogenesis, and this immediately prompted a search for its substrates. However, unlike most kinases that usually display a propensity to phosphorylate numerous substrates, after many years of study, only a few direct “interacting” substrates of TLKs have been identified, namely, the histone chaperone Asf1 [7], histone H3-S10 [8], Aurora B [5], and more recently Rad9 [9]. This suggested a function for TLKs in chromatin assembly [9, 10], during transcription [2, 11], DNA repair [3, 9, 12], and condensation of chromosomes at mitosis [4, 5]. The latter function, which was found critical for proper chromosome segregation, prompted a search for additional “indirect” substrates and functions and resulted in the identification of an activity on myosin II in mammalian cells [13] and on
References
[1]
J. Roe, C. Rivin, R. Sessions, K. Feldmann, and P. Zambryski, “The tousled gene in A. Thaliana encodes a protein kinase homolog that is required for leaf and flower development,” Cell, vol. 75, no. 5, pp. 939–950, 1993.
[2]
Y. Wang, J. Liu, R. Xia et al., “The protein kinase TOUSLED is required for maintenance of transcriptional gene silencing in arabidopsis,” EMBO Reports, vol. 8, no. 1, pp. 77–83, 2007.
[3]
S. Sen and A. De Benedetti, “TLK1B promotes repair of UV-damaged DNA through chromatin remodeling by Asf1,” BMC Molecular Biology, vol. 7, article 37, 2006.
[4]
G. Sunavala-Dossabhoy, Y. Li, B. Williams, and A. De Benedetti, “A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells,” BMC Cell Biology, vol. 4, article 16, 2003.
[5]
Z. Han, G. M. Riefler, J. R. Saam, S. E. Mango, and J. M. Schumacher, “The C. elegans tousled-like kinase contributes to chromosome segregation as a substrate and regulator of the aurora B kinase,” Current Biology, vol. 15, no. 10, pp. 894–904, 2005.
[6]
S. Shalom and J. Don, “Tlk, a novel evolutionarily conserved murine serine threonine kinase, encodes multiple testis transcripts,” Molecular Reproduction and Development, vol. 52, no. 4, pp. 392–405, 1999.
[7]
H. Silljé and E. Nigg, “Identification of human Asf1 chromatin assembly factors as substrates of tousled-like kinases,” Current Biology, vol. 11, no. 13, pp. 1068–1073, 2001.
[8]
Y. Li, R. DeFatta, C. Anthony, G. Sunavala, and A. De Benedetti, “A translationally regulated tousled kinase phosphorylates histone H3 and confers radioresistance when overexpressed,” Oncogene, vol. 20, no. 6, pp. 726–738, 2001.
[9]
G. Sunavala-Dossabhoy and A. De Benedetti, “Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair,” DNA Repair, vol. 8, no. 1, pp. 87–102, 2009.
[10]
P. Carrera, Y. Moshkin, S. Gr?nke et al., “Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions,” Genes & Development, vol. 17, no. 20, pp. 2578–2590, 2003.
[11]
Z. Han, J. Saam, H. Adams, S. Mango, and J. Schumacher, “The C. elegans tousled-like kinase (TLK-1) has an essential role in transcription,” Current Biology, vol. 13, no. 22, pp. 1921–1929, 2003.
[12]
G. Sunavala-Dossabhoy, S. Balakrishnan, S. Sen, S. Nuthalapaty, and A. De Benedetti, “The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks,” BMC Molecular Biology, vol. 6, article 19, 2005.
[13]
M. Hashimoto, T. Matsui, K. Iwabuchi, and T. Date, “PKU-β/TLK1 regulates myosin II activities, and is required for accurate equaled chromosome segregation,” Mutation Research, vol. 657, no. 1, pp. 63–67, 2008.
[14]
Z. Li, T. Umeyama, and C. Wang, “The chromosomal passenger complex and a mitotic kinesin interact with the tousled-like kinase in trypanosomes to regulate mitosis and cytokines,” PLoS ONE, vol. 3, no. 11, Article ID e3814, 2008.
[15]
H. Li, C. Chiang, H. Huang, and G. Liaw, “Mars and tousled-like kinase act in parallel to ensure chromosome fidelity in drosophila,” Journal of Biomedical Science, vol. 16, no. 1, article 51, 2009.
[16]
S. Zhang, H. Xing, and A. Muslin, “Nuclear localization of protein kinase U-α is regulated by 14-3-3,” The Journal of Biological Chemistry, vol. 274, no. 35, pp. 24865–24872, 1999.
[17]
R. Kodym, C. Hen?ckl, and C. Fürweger, “Identification of the human DEAD-box protein p68 as a substrate of Tlk1,” Biochemical and Biophysical Research Communications, vol. 333, no. 2, pp. 411–417, 2005.
[18]
T. Munakata, N. Adachi, N. Yokoyama, T. Kuzuhara, and M. Horikoshi, “A human homologue of yeast anti-silencing factor has histone chaperone activity,” Genes to Cells, vol. 5, no. 3, pp. 221–233, 2000.
[19]
F. Sanematsu, Y. Takami, H. K. Barman et al., “Asf1 is required for viability and chromatin assembly during DNA replication in vertebrate cells,” The Journal of Biological Chemistry, vol. 281, no. 19, pp. 13817–13827, 2006.
[20]
I. F. Grigsby, E. Rutledge, C. A. Morton, and F. P. Finger, “Functional redundancy of two C. elegans homologs of the histone chaperone Asf1 in germline DNA replication,” Developmental Biology, vol. 329, no. 1, pp. 64–79, 2009.
[21]
T. Umehara, T. Chimura, N. Ichikawa, and M. Horikoshi, “Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional both in vivo and in vitro,” Genes to Cells, vol. 7, no. 1, pp. 59–73, 2002.
[22]
J. G. Linger and J. K. Tyler, “Chromatin disassembly and reassembly during DNA repair,” Mutation Research, vol. 618, no. 1-2, pp. 52–64, 2007.
[23]
M. Ransom, B. Dennehey, and J. Tyler, “Chaperoning histones during DNA replication and repair,” Cell, vol. 140, no. 2, pp. 183–195, 2010.
[24]
C. Alabert and A. Groth, “Chromatin replication and epigenome maintenance,” Nature Reviews Molecular Cell Biology, vol. 13, no. 3, pp. 153–167, 2012.
[25]
M. W. Adkins and J. K. Tyler, “The histone chaperone Asf1p mediates global chromatin disassembly in vivo,” The Journal of Biological Chemistry, vol. 279, no. 50, pp. 52069–52074, 2004.
[26]
P. Korber, S. Barbaric, T. Luckenbach et al., “The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters,” The Journal of Biological Chemistry, vol. 281, no. 9, pp. 5539–5545, 2006.
[27]
S. Takahata, Y. Yu, and D. Stillman, “FACT and Asf1 regulate nucleosome dynamics and coactivator binding at the HO promoter,” Molecular Cell, vol. 34, no. 4, pp. 405–415, 2009.
[28]
C. Chen, J. Carson, J. Feser et al., “Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair,” Cell, vol. 134, no. 2, pp. 231–243, 2008.
[29]
C. English, M. Adkins, J. Carson, M. E. A. Churchill, and J. Tyler, “Structural basis for the histone chaperone activity of Asf1,” Cell, vol. 127, no. 3, pp. 495–508, 2006.
[30]
M. Adkins, S. Howar, and J. Tyler, “Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes,” Molecular Cell, vol. 14, no. 5, pp. 657–666, 2004.
[31]
A. De Benedetti, “Tousled kinase TLK1B mediates chromatin assembly in conjunction with Asf1 regardless of its kinase activity,” BMC Research Notes, vol. 3, article 68, 2010.
[32]
S. Sohn and Y. Cho, “Crystal structure of the human Rad9-Hus1-Rad1 clamp,” Journal of Molecular Biology, vol. 390, no. 3, pp. 490–502, 2009.
[33]
S. Delacroix, J. M. Wagner, M. Kobayashi, K.-I. Yamamoto, and L. M. Karnitz, “The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1,” Genes & Development, vol. 21, no. 12, pp. 1472–1477, 2007.
[34]
M. Thelen, C. Venclovas, and K. Fidelis, “A sliding clamp model for the Rad1 family of cell cycle checkpoint proteins,” Cell, vol. 96, no. 6, pp. 769–770, 1999.
[35]
M. Burtelow, P. Roos-Mattjus, M. Rauen, J. Babendure, and L. Karnitz, “Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex,” The Journal of Biological Chemistry, vol. 276, no. 28, pp. 25903–25909, 2001.
[36]
J. Griffith, L. Lindsey-Boltz, and A. Sancar, “Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy,” The Journal of Biological Chemistry, vol. 277, no. 18, pp. 15233–15236, 2002.
[37]
L. Lindsey-Boltz, V. Bermudez, J. Hurwitz, and A. Sancar, “Purification and characterization of human DNA damage checkpoint rad complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11236–11241, 2001.
[38]
W. Wang, P. Brandt, M. Rossi et al., “The human Rad9-Rad1-Hus1 checkpoint complex stimulates flap endonuclease 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 48, pp. 16762–16767, 2004.
[39]
E. Friedrich-Heineken, M. Toueille, B. T?nnler et al., “The two DNA clamps Rad9/Rad1/Hus1 complex and proliferating cell nuclear antigen differentially regulate flap endonuclease 1 activity,” Journal of Molecular Biology, vol. 353, no. 5, pp. 980–989, 2005.
[40]
M. Toueille, N. El-Andaloussi, I. Fouin et al., “The human Rad9/Rad1/Hus1 damage sensor clamp interacts with DNA polymerase β and increases its DNA substrate utilisation efficiency: implications for DNA repair,” Nucleic Acids Research, vol. 32, no. 11, pp. 3316–3324, 2004.
[41]
E. Smirnova, M. Toueille, E. Markkanen, and U. Hübscher, “The human checkpoint sensor and alternative DNA clamp Rad9-Rad1-Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery,” Biochemical Journal, vol. 389, no. 1, pp. 13–17, 2005.
[42]
D. Chang and A. Lu, “Interaction of checkpoint proteins Hus1/Rad1/Rad9 with DNA base excision repair enzyme MutY homolog in fission yeast, Schizosaccharomyces pombe,” The Journal of Biological Chemistry, vol. 280, no. 1, pp. 408–417, 2005.
[43]
D. Lydall and T. Weinert, “Yeast checkpoint genes in DNA damage processing: implications for repair and arrest,” Science, vol. 270, no. 5241, pp. 1488–1491, 1995.
[44]
A. Parker, I. Van de Weyer, M. Laus et al., “A human homologue of the schizosaccharomyces pombe rad1?+?checkpoint gene encodes an exonuclease,” The Journal of Biological Chemistry, vol. 273, no. 29, pp. 18332–18339, 1998.
[45]
T. Bessho and A. Sancar, “Human DNA damage checkpoint protein hRAD9 is a to exonuclease,” The Journal of Biological Chemistry, vol. 275, no. 11, pp. 7451–7454, 2000.
[46]
C. Canfield, J. Rains, and A. De Benedetti, “TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1,” BMC Molecular Biology, vol. 10, article 110, 2009.
[47]
C. Cotta-Ramusino, E. McDonald, K. Hurov, M. Sowa, J. Harper, and S. Elledge, “A DNA damage response screen identifies RHINO, a 9-1-1 and topBP1 interacting protein required for ATR signaling,” Science, vol. 332, no. 6035, pp. 1313–1317, 2011.
[48]
P. Pichierri, S. Nicolai, L. Cignolo, M. Bignami, and A. Franchitto, “The RAD9-RAD1-HUS1 (9.1.1) complex interacts with WRN and is crucial to regulate its response to replication fork stalling,” Oncogene. In press.
[49]
R. St. Onge, B. Besley, J. Pelley, and S. Davey, “A role for the phosphorylation of hRad9 in checkpoint signaling,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 26620–26628, 2003.
[50]
P. Roos-Mattjus, K. Hopkins, A. Oestreich et al., “Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling,” The Journal of Biological Chemistry, vol. 278, no. 27, pp. 24428–24437, 2003.
[51]
K. Yoshida, H.-G. Wang, Y. Miki, and D. Kufe, “Protein kinase Cδ is responsible for constitutive and DNA damage-induced phosphorylation of Rad9,” EMBO Journal, vol. 22, no. 6, pp. 1431–1441, 2003.
[52]
R. St. Onge, B. Besley, M. Park, R. Casselman, and S. Davey, “DNA damage-dependent and -independent phosphorylation of the hRad9 checkpoint protein,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 41898–41905, 2001.
[53]
A. Medhurst, D. Warmerdam, I. Akerman et al., “ATR and Rad17 collaborate in modulating Rad9 localisation at sites of DNA damage,” Journal of Cell Science, vol. 121, no. 23, pp. 3933–3940, 2008.
[54]
A. Takemoto, A. Murayama, M. Katano et al., “Analysis of the role of aurora B on the chromosomal targeting of condensin I,” Nucleic Acids Research, vol. 35, no. 7, pp. 2403–2412, 2007.
[55]
Z. Li, S. Gourguechon, and C. C. Wang, “Tousled-like kinase in a microbial eukaryote regulates spindle assembly and s-phase progression by interacting with Aurora kinase and chromatin assembly factors,” Journal of Cell Science, vol. 120, no. 21, pp. 3883–3894, 2007.
[56]
G. Sunavala-Dossabhoy, M. Fowler, and A. De Benedetti, “Translation of the radioresistance kinase TLK1B is induced by γ-irradiation through activation of mTOR and phosphorylation of 4E-BP1,” BMC Molecular Biology, vol. 5, article 1, 2004.
[57]
C. Guo, C. Mizzen, Y. Wang, and J. Larner, “Histone H1 and H3 dephosphorylation are differentially regulated by radiation-induced signal transduction pathways,” Cancer Research, vol. 60, no. 20, pp. 5667–5672, 2000.
[58]
P. Sassone-Corsi, C. A. Mizzen, P. Cheung et al., “Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3,” Science, vol. 285, no. 5429, pp. 886–891, 1999.
[59]
S. Thomson, A. L. Clayton, C. A. Hazzalin, S. Rose, M. J. Barratt, and L. C. Mahadevan, “The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase,” EMBO Journal, vol. 18, no. 17, pp. 4779–4793, 1999.
[60]
C. De Souza, A. Osmani, L. Wu, J. Spotts, and S. Osmani, “Mitotic histone H3 phosphorylation by the NIMA kinase in aspergillus nidulans,” Cell, vol. 102, no. 3, pp. 293–302, 2000.
[61]
J. Hsu, Z. Sun, X. Li et al., “Mitotic phosphorylation of histone H3 is governed by IpI1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes,” Cell, vol. 102, no. 3, pp. 279–291, 2000.
[62]
T. Nagase, N. Seki, A. Tanaka, K. Ishikawa, and N. Nomura, “Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121-KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1,” DNA Research, vol. 2, no. 4, pp. 167–174, 1995.
[63]
H. Silljé, K. Takahashi, K. Tanaka, G. Van Houwe, and E. Nigg, “Mammalian homologues of the plant tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication,” EMBO Journal, vol. 18, no. 20, pp. 5691–5702, 1999.
[64]
A. Yamakawa, Y. Kameoka, K. Hashimoto et al., “cDNA cloning and chromosomal mapping of genes encoding novel protein kinases termed PKU-α and PKU-β, which have nuclear localization signal,” Gene, vol. 202, no. 1-2, pp. 193–201, 1997.
[65]
A. Chen, “PARP inhibitors: its role in treatment of cancer,” Chinese Journal of Cancer, vol. 30, no. 7, pp. 463–471, 2011.
[66]
A. Groth, J. Lukas, E. Nigg et al., “Human tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint,” EMBO Journal, vol. 22, no. 7, pp. 1676–1687, 2003.
[67]
K. Byrnes, A. De Benedetti, N. Holm et al., “Correlation of TLK1B in elevation and recurrence in doxorubicin-treated breast cancer patients with high eIF4E overexpression,” Journal of the American College of Surgeons, vol. 204, no. 5, pp. 925–933, 2007.
[68]
R. Wolfort, A. De Benedetti, S. Nuthalapaty, H. Yu, Q. Chu, and B. Li, “Up-regulation of TLK1B by eIF4E overexpression predicts cancer recurrence in irradiated patients with breast cancer,” Surgery, vol. 140, no. 2, pp. 161–169, 2006.
[69]
L. E. Kelemen, X. Wang, Z. S. Fredericksen et al., “Genetic variation in the chromosome 17q23 amplicon and breast cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 6, pp. 1864–1868, 2009.
[70]
K. N. Stevens, X. Wang, Z. Fredericksen et al., “Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer,” Breast Cancer Research and Treatment, vol. 129, no. 2, pp. 617–622, 2011.
[71]
S. Ronald, G. Sunavala-Dossabhoy, L. Adams, B. Williams, and A. De Benedetti, “The expression of tousled kinases in CaP cell lines and its relation to radiation response and DSB repair,” Prostate, vol. 71, no. 13, pp. 1367–1373, 2011.
[72]
A. Zhu, C. Zhang, and H. Lieberman, “Rad9 has a functional role in human prostate carcinogenesis,” Cancer Research, vol. 68, no. 5, pp. 1267–1274, 2008.
[73]
U. Moehren, S. Denayer, M. Podvinec, G. Verrijdt, and F. Claessens, “Identification of androgen-selective androgen-response elements in the human aquaporin-5 and Rad9 genes,” Biochemical Journal, vol. 411, no. 3, pp. 679–686, 2008.
[74]
C. Hsu, Y. Chen, H. Ting et al., “Androgen receptor (AR) NH2- and COOH-terminal interactions result in the differential influences on the AR-mediated transactivation and cell growth,” Molecular Endocrinology, vol. 19, no. 2, pp. 350–361, 2005.
[75]
C. G. Broustas and H. B. Lieberman, “Contributions of Rad9 to tumorigenesis,” Journal of Cellular Biochemistry, vol. 113, no. 3, pp. 742–751, 2012.
[76]
H. B. Lieberman, J. D. Bernstock, C. G. Broustas, K. M. Hopkins, C. Leloup, and A. Zhu, “The role of RAD9 in tumorigenesis,” Journal of Molecular Cell Biology, vol. 3, no. 1, pp. 39–43, 2011.
[77]
A. Corpet, L. De Koning, J. Toedling et al., “Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer,” EMBO Journal, vol. 30, no. 3, pp. 480–493, 2011.
[78]
N. Van Roy, J. Vandesompele, G. Berx et al., “Localization of the 17q breakpoint of a constitutional 1;17 translocation in a patient with neuroblastoma within a 25-kb segment located between the ACCN1 and TLK2 genes and near the distal breakpoints of two microdeletions in neurofibromatosis type 1 patients,” Genes Chromosomes and Cancer, vol. 35, no. 2, pp. 113–120, 2002.
[79]
C. H. Lee, B. O. Alpert, P. Sankaranarayanan, and O. Alter, “GSVD comparison of patient-matched normal and tumor aCGH profiles reveals global copy-number alterations predicting glioblastoma multiforme survival,” PLoS ONE, vol. 7, no. 1, Article ID e30098, 2012.
[80]
J. Mello, H. Silljé, D. Roche, D. Kirschner, E. Nigg, and G. Almouzni, “Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway,” EMBO Reports, vol. 3, no. 4, pp. 329–334, 2002.
[81]
T. Tsukuda, A. B. Fleming, J. A. Nickoloff, and M. A. Osley, “Chromatin remodelling at a DNA double-strand break site in saccharomyces cerevisiae,” Nature, vol. 438, no. 7066, pp. 379–383, 2005.
[82]
A. De Benedetti, “Tousled kinase TLK1B counteracts the effect of Asf1 in inhibition of histone H3-H4 tetramer formation,” BMC Research Notes, vol. 2, article 128, 2009.
[83]
S. Elledge, “Cell cycle checkpoints: preventing an identity crisis,” Science, vol. 274, no. 5293, pp. 1664–1672, 1996.
[84]
S. Braunstein, M. L. Badura, Q. Xi, S. C. Formenti, and R. J. Schneider, “Regulation of protein synthesis by ionizing radiation,” Molecular and Cellular Biology, vol. 29, no. 21, pp. 5645–5656, 2009.
[85]
R. Kodym, T. Mayerhofer, and E. Ortmann, “Purification and identification of a protein kinase activity modulated by ionizing radiation,” Biochemical and Biophysical Research Communications, vol. 313, no. 1, pp. 97–103, 2004.
[86]
D. Krause, J. Jonnalagadda, M. Gatei et al., “Suppression of tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1,” Oncogene, vol. 22, no. 38, pp. 5927–5937, 2003.
[87]
A. Franco, W. Lam, P. Burgers, and P. Kaufman, “Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C,” Genes & Development, vol. 19, no. 11, pp. 1365–1375, 2005.
[88]
P. Pichierri, F. Ammazzalorso, M. Bignami, and A. Franchitto, “The Werner syndrome protein: linking the replication checkpoint response to genome stability,” Aging, vol. 3, no. 3, pp. 311–318, 2011.
[89]
Y. Takayama, T. Kokuryo, Y. Yokoyama et al., “Silencing of tousled-like kinase 1 sensitizes cholangiocarcinoma cells to cisplatin-induced apoptosis,” Cancer Letters, vol. 296, no. 1, pp. 27–34, 2010.
[90]
S. Palaniyandi, Y. Odaka, W. Green et al., “Adenoviral delivery of tousled kinase for the protection of salivary glands against ionizing radiation damage,” Gene Therapy, vol. 18, no. 3, pp. 275–282, 2011.
[91]
G. Sunavala-Dossabhoy, S. Palaniyandi, C. Richardson, A. De Benedetti, L. Schrott, and G. Caldito, “TAT-mediated delivery of tousled protein to salivary glands protects against radiation-induced hypofunction,” International Journal of Radiation Oncology, Biology, Physics. In press.