全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ion Transporters and Abiotic Stress Tolerance in Plants

DOI: 10.5402/2012/927436

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adaptation of plants to salt stress requires cellular ion homeostasis involving net intracellular Na+ and Cl? uptake and subsequent vacuolar compartmentalization without toxic ion accumulation in the cytosol. Sodium ions can enter the cell through several low- and high-affinity K+ carriers. Some members of the HKT family function as sodium transporter and contribute to Na+ removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature. Na+ sequestration into the vacuole depends on expression and activity of Na+/H+ antiporter that is driven by electrochemical gradient of protons generated by the vacuolar H+-ATPase and the H+-pyrophosphatase. Sodium extrusion at the root-soil interface is presumed to be of critical importance for the salt tolerance. Thus, a very rapid efflux of Na+ from roots must occur to control net rates of influx. The Na+/H+ antiporter SOS1 localized to the plasma membrane is the only Na+ efflux protein from plants characterized so far. In this paper, we analyze available data related to ion transporters and plant abiotic stress responses in order to enhance our understanding about how salinity and other abiotic stresses affect the most fundamental processes of cellular function which have a substantial impact on plant growth development. 1. Introduction Agricultural productivity is severely affected by soil salinity. Environmental stress due to salinity is one of the most serious factors limiting the productivity of agricultural crops, most of which are sensitive to the presence of high concentrations of salts in the soil. There are two main components to salinity stress in plants; an initial osmotic stress and a subsequent accumulation of toxic ions which negatively affects cellular metabolism [1]. In addition, it can lead to secondary stresses such as nutritional imbalance and oxidative stress [2]. The Na+ cation is chaotropic and predominantly associated with the deleterious effect of salinity, and therefore, most research has focused on this mineral. However, plant adaptation to salt stress also requires appropriate regulation of Cl? homeostasis [3]. Indeed, for species such as soybean, citrus, and grapevine where Na+ is predominantly retained in the roots and stems, Cl? is considered more toxic since this ion is accumulated to high levels in shoot tissues, negatively impacting on essential processes such as photosynthesis. The osmotic component of salinity is caused by excess inorganic ions such as Na+ and Cl? in the environment that decrease the osmotic potential of the soil

References

[1]  R. Munns, R. A. James, and A. L?uchli, “Approaches to increasing the salt tolerance of wheat and other cereals,” Journal of Experimental Botany, vol. 57, no. 5, pp. 1025–1043, 2006.
[2]  R. G. Alscher, J. L. Donahue, and C. L. Cramer, “Reactive oxygen species and antioxidants: relationships in green cells,” Physiologia Plantarum, vol. 100, no. 2, pp. 224–233, 1997.
[3]  R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008.
[4]  F. J. M. Maathuis and A. Amtmann, “K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios,” Annals of Botany, vol. 84, no. 2, pp. 123–133, 1999.
[5]  J. K. Zhu, “Plant salt tolerance,” Trends in Plant Science, vol. 6, no. 2, pp. 66–71, 2001.
[6]  J. A. Hernández, M. A. Ferrer, A. Jiménez, A. R. Barceló, and F. Sevilla, “Antioxidant systems and /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins,” Plant Physiology, vol. 127, no. 3, pp. 817–831, 2001.
[7]  D. Bartels and R. Sunkar, “Drought and salt tolerance in plants,” Critical Reviews in Plant Sciences, vol. 24, no. 1, pp. 23–58, 2005.
[8]  E. Blumwald, “Sodium transport and salt tolerance in plants,” Current Opinion in Cell Biology, vol. 12, no. 4, pp. 431–434, 2000.
[9]  T. J. Flowers and T. D. Colmer, “Salinity tolerance in halophytes,” New Phytologist, vol. 179, no. 4, pp. 945–963, 2008.
[10]  F. J. M. Maathuis, “Monovalent cation transporters; establishing a link between bioinformatics and physiology,” Plant and Soil, vol. 301, no. 1-2, pp. 1–15, 2007.
[11]  M. P. Apse, G. S. Aharon, W. A. Snedden, and E. Blumwald, “Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis,” Science, vol. 285, no. 5431, pp. 1256–1258, 1999.
[12]  D. P. Schachtman and J. I. Schroeder, “Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants,” Nature, vol. 370, no. 6491, pp. 655–658, 1994.
[13]  A. Rus, B. H. Lee, A. Mu?oz-Mayor et al., “AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta,” Plant Physiology, vol. 136, no. 1, pp. 2500–2511, 2004.
[14]  J. K. Zhu, “Genetic analysis of plant salt tolerance using Arabidopsis,” Plant Physiology, vol. 124, no. 3, pp. 941–948, 2000.
[15]  R. A. Gaxiola, J. Li, S. Undurraga et al., “Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11444–11449, 2001.
[16]  L. Xiong and J. K. Zhu, “Molecular and genetic aspects of plant responses to osmotic stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 131–139, 2002.
[17]  M. Tester and R. Davenport, “Na+ tolerance and Na+ transport in higher plants,” Annals of Botany, vol. 91, no. 5, pp. 503–527, 2003.
[18]  T. Horie and J. I. Schroeder, “Sodium transporters in plants. Diverse genes and physiological functions,” Plant Physiology, vol. 136, no. 1, pp. 2457–2462, 2004.
[19]  Q. Leng, R. W. Mercier, B. G. Hua, H. Fromm, and G. A. Berkowitz, “Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels,” Plant Physiology, vol. 128, no. 2, pp. 400–410, 2002.
[20]  V. Demidchik, P. A. Essah, and M. Tester, “Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells,” Planta, vol. 219, no. 1, pp. 167–175, 2004.
[21]  F. J. M. Maathuis and D. Sanders, “Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides,” Plant Physiology, vol. 127, no. 4, pp. 1617–1625, 2001.
[22]  I. N. Talke, D. Blaudez, F. J. M. Maathuis, and D. Sanders, “CNGCs: prime targets of plant cyclic nucleotide signalling?” Trends in Plant Science, vol. 8, no. 6, pp. 286–293, 2003.
[23]  C. Balagué, B. Lin, C. Alcon et al., “HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family,” Plant Cell, vol. 15, no. 2, pp. 365–379, 2003.
[24]  J. Li, H. Yang, W. A. Peer et al., “Plant science: Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development,” Science, vol. 310, no. 5745, pp. 121–125, 2005.
[25]  A. Gobert, G. Park, A. Amtmann, D. Sanders, and F. J. M. Maathuis, “Arabidopsis thaliana Cyclic Nucleotide Gated Channel 3 forms a non-selective ion transporter involved in germination and cation transport,” Journal of Experimental Botany, vol. 57, no. 4, pp. 791–800, 2006.
[26]  D. P. Schachtman, S. D. Tyerman, and B. R. Terry, “The K+/Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species,” Plant Physiology, vol. 97, no. 2, pp. 598–605, 1991.
[27]  A. Amtmann and D. Sanders, “Mechanisms of Na+ uptake by plant cells,” Advances in Botanical Research, vol. 29, pp. 75–112, 1998.
[28]  S. M. Wang, J. L. Zhang, and T. J. Flowers, “Low-affinity Na+ uptake in the Halophyte Suaeda maritima,” Plant Physiology, vol. 145, no. 2, pp. 559–571, 2007.
[29]  M. A. Kader and S. Lindberg, “Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI,” Journal of Experimental Botany, vol. 56, no. 422, pp. 3149–3158, 2005.
[30]  R. Haro, M. A. Ba?uelos, M. E. Senn, J. Barrero-Gil, and A. Rodríguez-Navarro, “HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast,” Plant Physiology, vol. 139, no. 3, pp. 1495–1506, 2005.
[31]  T. Horie, F. Hauser, and J. I. Schroeder, “HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants,” Trends in Plant Science, vol. 14, no. 12, pp. 660–668, 2009.
[32]  X. Yao, T. Horie, S. Xue et al., “Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells,” Plant Physiology, vol. 152, no. 1, pp. 341–355, 2010.
[33]  P. A. Essah, R. Davenport, and M. Tester, “Sodium influx and accumulation in Arabidopsis,” Plant Physiology, vol. 133, no. 1, pp. 307–318, 2003.
[34]  Sunarpi, T. Horie, J. Motoda et al., “Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells,” Plant Journal, vol. 44, no. 6, pp. 928–938, 2005.
[35]  V. Demidchik and F. J. M. Maathuis, “Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development,” New Phytologist, vol. 175, no. 3, pp. 387–404, 2007.
[36]  J. M. Pardo, “Biotechnology of water and salinity stress tolerance,” Current Opinion in Biotechnology, vol. 21, no. 2, pp. 185–196, 2010.
[37]  P. Berthomieu, G. Conéjéro, A. Nublat et al., “Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance,” EMBO Journal, vol. 22, no. 9, pp. 2004–2014, 2003.
[38]  R. A. James, R. J. Davenport, and R. Munns, “Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2,” Plant Physiology, vol. 142, no. 4, pp. 1537–1547, 2006.
[39]  R. J. Davenport, A. Mu?oz-Mayor, D. Jha, P. A. Essah, A. Rus, and M. Tester, “The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis,” Plant, Cell and Environment, vol. 30, no. 4, pp. 497–507, 2007.
[40]  I. S. M?ller, M. Gilliham, D. Jha et al., “Shoot Na+ exclusion and increased salinity tolerance engineered by cell type—specific alteration of Na+ transport in Arabidopsis,” Plant Cell, vol. 21, no. 7, pp. 2163–2178, 2009.
[41]  M. P. Apse and E. Blumwald, “Na+ transport in plants,” FEBS Letters, vol. 581, no. 12, pp. 2247–2254, 2007.
[42]  M. A. Kader, T. Seidel, D. Golldack, and S. Lindberg, “Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars,” Journal of Experimental Botany, vol. 57, no. 15, pp. 4257–4268, 2006.
[43]  T. Horie, A. Costa, T. H. Kim et al., “Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth,” EMBO Journal, vol. 26, no. 12, pp. 3003–3014, 2007.
[44]  D. Golldack, H. Su, F. Quigley et al., “Characterization of a HKT-type transporter in rice as a general alkali cation transporter,” Plant Journal, vol. 31, no. 4, pp. 529–542, 2002.
[45]  B. Garciadeblás, M. E. Senn, M. A. Ba?uelos, and A. Rodríguez-Navarro, “Sodium transport and HKT transporters: the rice model,” Plant Journal, vol. 34, no. 6, pp. 788–801, 2003.
[46]  M. A. Ba?uelos, R. Haro, A. Fraile-Escanciano, and A. Rodríguez-Navarro, “Effects of polylinker uATGs on the function of grass HKT1 transporters expressed in yeast cells,” Plant and Cell Physiology, vol. 49, no. 7, pp. 1128–1132, 2008.
[47]  Z. H. Ren, J. P. Gao, L. G. Li et al., “A rice quantitative trait locus for salt tolerance encodes a sodium transporter,” Nature Genetics, vol. 37, no. 10, pp. 1141–1146, 2005.
[48]  S. Huang, W. Spielmeyer, E. S. Lagudah et al., “A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat,” Plant Physiology, vol. 142, no. 4, pp. 1718–1727, 2006.
[49]  C. S. Byrt, J. D. Platten, W. Spielmeyer et al., “HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1,” Plant Physiology, vol. 143, no. 4, pp. 1918–1928, 2007.
[50]  H. X. Lin, M. Z. Zhu, M. Yano et al., “QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance,” Theoretical and Applied Genetics, vol. 108, no. 2, pp. 253–260, 2004.
[51]  J. M. Pardo and F. J. Quintero, “Plants and sodium ions: keeping company with the enemy,” Genome Biology, vol. 3, no. 6, article 1017, pp. 1017.1–1017.4, 2002.
[52]  G. E. Santa-María, F. Rubio, J. Dubcovsky, and A. Rodríguez-Navarro, “The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter,” Plant Cell, vol. 9, no. 12, pp. 2281–2289, 1997.
[53]  H. H. Fu and S. Luan, “AtKUP1: a dual-affinity K+ transporter from Arabidopsis,” Plant Cell, vol. 10, no. 1, pp. 63–73, 1998.
[54]  D. Y. Chao, Y. H. Luo, M. Shi, D. Luo, and H. X. Lin, “Salt-responsive genes in rice revealed by cDNA microarray analysis,” Cell Research, vol. 15, no. 10, pp. 796–810, 2005.
[55]  H. Walia, C. Wilson, P. Condamine et al., “Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage,” Plant Physiology, vol. 139, no. 2, pp. 822–835, 2005.
[56]  H. Walia, C. Wilson, P. Condamine, X. Liu, A. M. Ismail, and T. J. Close, “Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress,” Plant, Cell and Environment, vol. 30, no. 4, pp. 410–421, 2007.
[57]  H. Su, D. Golldack, C. Zhao, and H. J. Bohnert, “The expression of HAK-Type K+ transporters is regulated in response to salinity stress in common ice plant,” Plant Physiology, vol. 129, no. 4, pp. 1482–1493, 2002.
[58]  D. P. Schachtman, R. Kumar, J. I. Schroeder, and E. L. Marsh, “Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 11079–11084, 1997.
[59]  S. Clemens, D. M. Antosiewicz, J. M. Ward, D. P. Schachtman, and J. I. Schroeder, “The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 12043–12048, 1998.
[60]  A. Amtmann, M. Fischer, E. L. Marsh, A. Stefanovic, D. Sanders, and D. P. Schachtman, “The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain,” Plant Physiology, vol. 126, no. 3, pp. 1061–1071, 2001.
[61]  H. Marschner, Mineral Nutrition in Higher Plants, Academic Press, London, UK, 2nd edition, 1995.
[62]  J. M. Colmenero-Flores, G. Martínez, G. Gamba et al., “Identification and functional characterization of cation-chloride cotransporters in plants,” Plant Journal, vol. 50, no. 2, pp. 278–292, 2007.
[63]  M. Hechenberger, B. Schwappach, W. N. Fischer, W. B. Frommer, T. J. Jentsch, and K. Steinmeyer, “A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption,” Journal of Biological Chemistry, vol. 271, no. 52, pp. 33632–33638, 1996.
[64]  H. Barbier-Brygoo, M. Vinauger, J. Colcombet, G. Ephritikhine, J. M. Frachisse, and C. Maurel, “Anion channels in higher plants: functional characterization, molecular structure and physiological role,” Biochimica et Biophysica Acta, vol. 1465, no. 1-2, pp. 199–218, 2000.
[65]  D. Geelen, C. Lurin, D. Bouchez et al., “Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content,” Plant Journal, vol. 21, no. 3, pp. 259–267, 2000.
[66]  A. De Angeli, D. Monachello, G. Ephritikhine et al., “The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles,” Nature, vol. 442, no. 7105, pp. 939–942, 2006.
[67]  J. V. D. Fecht-Bartenbach, M. Bogner, M. Krebs, Y. D. Stierhof, K. Schumacher, and U. Ludewig, “Function of the anion transporter AtCLC-d in the trans-Golgi network,” Plant Journal, vol. 50, no. 3, pp. 466–474, 2007.
[68]  C. J. Diédhiou and D. Golldack, “Salt-dependent regulation of chloride channel transcripts in rice,” Plant Science, vol. 170, no. 4, pp. 793–800, 2006.
[69]  J. Negi, O. Matsuda, T. Nagasawa et al., “CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells,” Nature, vol. 452, no. 7186, pp. 483–486, 2008.
[70]  T. Vahisalu, H. Kollist, Y. F. Wang et al., “SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling,” Nature, vol. 452, no. 7186, pp. 487–491, 2008.
[71]  E. Blumwald, G. S. Aharon, and M. P. Apse, “Sodium transport in plant cells,” Biochimica et Biophysica Acta, vol. 1465, no. 1-2, pp. 140–151, 2000.
[72]  E. Blumwald and R. J. Poole, “Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris,” Plant Physiologyl, vol. 78, pp. 163–167, 1985.
[73]  M. Staal, F. J. M. Maathuis, T. M. Elzenga, J. H. M. Odberbeek, and H. B. A. Prins, “Na+/H+ antiport activity of the salt-tolerant Plantago maritime and the salt-sensitive Plantago media,” Physiologia Plantarum, vol. 82, pp. 179–184, 1991.
[74]  A. Katz, H. R. Kaback, and M. Avron, “Na+/H+ antiport in isolated plasma membrane vesicles from the halotolerant alga Dunaliella salina,” FEBS Letters, vol. 202, no. 1, pp. 141–144, 1986.
[75]  D. T. Britto and H. J. Kronzucker, “Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport,” Trends in Plant Science, vol. 11, no. 11, pp. 529–534, 2006.
[76]  H. Shi, F. J. Quintero, J. M. Pardo, and J. K. Zhu, “The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants,” Plant Cell, vol. 14, no. 2, pp. 465–477, 2002.
[77]  Q. S. Qiu, Y. Guo, M. A. Dietrich, K. S. Schumaker, and J. K. Zhu, “Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8436–8441, 2002.
[78]  J. M. Pardo, B. Cubero, E. O. Leidi, and F. J. Quintero, “Alkali cation exchangers: roles in cellular homeostasis and stress tolerance,” Journal of Experimental Botany, vol. 57, no. 5, pp. 1181–1199, 2006.
[79]  D. H. Oh, E. Leidi, Q. Zhang et al., “Loss of Halophytism by interference with SOS1 expression,” Plant Physiology, vol. 151, no. 1, pp. 210–222, 2009.
[80]  R. Olías, Z. Eljakaoui, J. Li et al., “The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs,” Plant, Cell and Environment, vol. 32, no. 7, pp. 904–916, 2009.
[81]  F. J. Quintero, M. Ohta, H. Shi, J. K. Zhu, and J. M. Pardo, “Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 9061–9066, 2002.
[82]  M. J. Sánchez-Barrena, S. Moreno-Pérez, I. Angulo, M. Martínez-Ripoll, and A. Albert, “The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis,” Acta Crystallographica Section F, vol. 63, no. 7, pp. 568–570, 2007.
[83]  R. Quan, H. Lin, I. Mendoza et al., “SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress,” Plant Cell, vol. 19, no. 4, pp. 1415–1431, 2007.
[84]  H. Lin, Y. Yang, R. Quan et al., “Phosphorylation of SOS3-like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis,” Plant Cell, vol. 21, no. 5, pp. 1607–1619, 2009.
[85]  O. Batisti?, N. Sorek, S. Schültke, S. Yalovsky, and J. Kudla, “Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis,” Plant Cell, vol. 20, no. 5, pp. 1346–1362, 2008.
[86]  B. G. Kim, R. Waadt, Y. H. Cheong et al., “The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis,” Plant Journal, vol. 52, no. 3, pp. 473–484, 2007.
[87]  Q. S. Qiu, Y. Guo, F. J. Quintero, J. M. Pardo, K. S. Schumaker, and J. K. Zhu, “Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 207–215, 2004.
[88]  G. Batelli, P. E. Verslues, F. Agius et al., “SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity,” Molecular and Cellular Biology, vol. 27, no. 22, pp. 7781–7790, 2007.
[89]  S. Yokoi, F. J. Quintero, B. Cubero et al., “Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response,” Plant Journal, vol. 30, no. 5, pp. 529–539, 2002.
[90]  R. An, Q. J. Chen, M. F. Chai et al., “AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter,” Plant Journal, vol. 49, no. 4, pp. 718–728, 2007.
[91]  H. T. Li, H. Liu, X. S. Gao, and H. Zhang, “Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress,” Biochemical and Biophysical Research Communications, vol. 382, no. 3, pp. 637–641, 2009.
[92]  G. S. Aharon, M. P. Apse, S. Duan, X. Hua, and E. Blumwald, “Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis Thaliana,” Plant and Soil, vol. 253, no. 1, pp. 245–256, 2003.
[93]  H. X. Zhang and E. Blumwald, “Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit,” Nature Biotechnology, vol. 19, no. 8, pp. 765–768, 2001.
[94]  H. X. Zhang, J. N. Hodson, J. P. Williams, and E. Blumwald, “Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12832–12836, 2001.
[95]  C. He, J. Yan, G. Shen et al., “Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field,” Plant and Cell Physiology, vol. 46, no. 11, pp. 1848–1854, 2005.
[96]  F. Brini, M. Hanin, I. Mezghani, G. A. Berkowitz, and K. Masmoudi, “Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants,” Journal of Experimental Botany, vol. 58, no. 2, pp. 301–308, 2007.
[97]  A. Fukuda, A. Nakamura, A. Tagiri et al., “Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice,” Plant and Cell Physiology, vol. 45, no. 2, pp. 146–159, 2004.
[98]  F. Y. Zhao, X. J. Zhang, P. H. Li, Y. X. Zhao, and H. Zhang, “Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1,” Molecular Breeding, vol. 17, no. 4, pp. 341–353, 2006.
[99]  Z. Y. Xue, D. Y. Zhi, G. P. Xue, H. Zhang, Y. X. Zhao, and G. M. Xia, “Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+,” Plant Science, vol. 167, no. 4, pp. 849–859, 2004.
[100]  A. Fukuda, K. Chiba, M. Maeda, A. Nakamura, M. Maeshima, and Y. Tanaka, “Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley,” Journal of Experimental Botany, vol. 55, no. 397, pp. 585–594, 2004.
[101]  S. Fukada-Tanaka, Y. Inagaki, T. Yamaguchi, N. Saito, and S. Iida, “Colour-enhancing protein in blue petals,” Nature, vol. 407, no. 6804, p. 581, 2000.
[102]  K. Viehweger, B. Dordschbal, and W. Roos, “Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+-dependent proton fluxes,” Plant Cell, vol. 14, no. 7, pp. 1509–1525, 2002.
[103]  T. Yamaguchi, M. P. Apse, H. Shi, and E. Blumwald, “Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12510–12515, 2003.
[104]  M. P. Apse, J. B. Sottosanto, and E. Blumwald, “Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter,” Plant Journal, vol. 36, no. 2, pp. 229–239, 2003.
[105]  J. B. Sottosanto, A. Gelli, and E. Blumwald, “DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter: impact of AtNHX1 on gene expression,” Plant Journal, vol. 40, no. 5, pp. 752–771, 2004.
[106]  J. B. Sottosanto, Y. Saranga, and E. Blumwald, “Impact of AtNHX1, a vacuolar Na+/H+antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana,” BMC Plant Biology, vol. 7, article 18, 2007.
[107]  M. Maeshima, “Vacuolar H+-pyrophosphatase,” Biochimica et Biophysica Acta, vol. 1465, no. 1-2, pp. 37–51, 2000.
[108]  M. Maeshima, “Tonoplast transporters: organization and function,” Annual Review of Plant Biology, vol. 52, pp. 469–497, 2001.
[109]  P. Morsomme and M. Boutry, “The plant plasma membrane H+-ATPase: structure, function and regulation,” Biochimica et Biophysica Acta, vol. 1465, no. 1-2, pp. 1–16, 2000.
[110]  Y. M. Drozdowicz and P. A. Rea, “Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream,” Trends in Plant Science, vol. 6, no. 5, pp. 206–211, 2001.
[111]  M. Hasegawa, R. Bressan, and J. M. Pardo, “The dawn of plant salt tolerance genetics,” Trends in Plant Science, vol. 5, no. 8, pp. 317–319, 2000.
[112]  Y. Sakakibara, H. Kobayashi, and K. Kasamo, “Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphatase isoforms from rice (Oryza sativa L.),” Plant Molecular Biology, vol. 31, no. 5, pp. 1029–1038, 1996.
[113]  Y. Tanaka, K. Chiba, M. Maeda, and M. Maeshima, “Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in hordeum vulgare,” Biochemical and Biophysical Research Communications, vol. 190, no. 3, pp. 1110–1114, 1993.
[114]  F. Brini, R. A. Gaxiola, G. A. Berkowitz, and K. Masmoudi, “Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump,” Plant Physiology and Biochemistry, vol. 43, no. 4, pp. 347–354, 2005.
[115]  A. Fukuda and Y. Tanaka, “Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley,” Plant Physiology and Biochemistry, vol. 44, no. 5-6, pp. 351–358, 2006.
[116]  H. Yang, J. Knapp, P. Koirala et al., “Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase,” Plant Biotechnology Journal, vol. 5, no. 6, pp. 735–745, 2007.
[117]  G. Xu, H. Magen, J. Tarchitzky, and U. Kafkafi, “Advances in chloride nutrition of plants,” Advances in Agronomy, vol. 68, pp. 97–150, 1999.
[118]  C. J. Diédhiou, Mechanisms of salt tolerance: sodium, chloride and potassium homeostasis in two rice lines with different tolerance to salinity stress, Ph.D. thesis, University of Bielefeld, Bielefeld, Germany, 2006.
[119]  A. Nakamura, A. Fukuda, S. Sakai, and Y. Tanaka, “Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.),” Plant and Cell Physiology, vol. 47, no. 1, pp. 32–42, 2006.
[120]  T. J. Flowers, P. F. Troke, and A. R. Yeo, “The mechanism of salt tolerance in halophytes,” Annual Review of Plant Physiology, vol. 28, pp. 89–121, 1977.
[121]  A. Lauchli, “Salt exclusion: an adaptation of legumes for crops and pastures under saline condition,” in Salinity Tolerance in Plants: Strategies for Crop Improvement, R. C. Staples and G. H. Toennissen, Eds., pp. 171–187, Wiley, New York, NY, USA, 1984.
[122]  D. Lacan and M. Durand, “Na+-K+ exchange at the xylem/symplast boundary: its significance in the salt sensitivity of soybean,” Plant Physiology, vol. 110, no. 2, pp. 705–711, 1996.
[123]  P. M?ser, B. Eckelman, R. Vaidyanathan et al., “Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1,” FEBS Letters, vol. 531, no. 2, pp. 157–161, 2002.
[124]  R. Davenport, R. A. James, A. Zakrisson-Plogander, M. Tester, and R. Munns, “Control of sodium transport in durum wheat,” Plant Physiology, vol. 137, no. 3, pp. 807–818, 2005.
[125]  D. Hall, A. R. Evans, H. J. Newbury, and J. Pritchard, “Functional analysis of CHX21: a putative sodium transporter in Arabidopsis,” Journal of Experimental Botany, vol. 57, no. 5, pp. 1201–1210, 2006.
[126]  P. Senadheera, R. K. Singh, and F. J. M. Maathuis, “Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance,” Journal of Experimental Botany, vol. 60, no. 9, pp. 2553–2563, 2009.
[127]  D. C. Plett and I. S. M?ller, “Na+ transport in glycophytic plants: what we know and would like to know,” Plant, Cell and Environment, vol. 33, no. 4, pp. 612–626, 2010.
[128]  K. M. Guo, O. Babourina, D. A. Christopher, T. Borsics, and Z. Rengel, “The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis,” Physiologia Plantarum, vol. 134, no. 3, pp. 499–507, 2008.
[129]  T. Nishiyama, T. Fujita, T. Shin-I et al., “Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 8007–8012, 2003.
[130]  W. Frank, D. Ratnadewi, and R. Reski, “Physcomitrella patens is highly tolerant against drought, salt and osmotic stress,” Planta, vol. 220, no. 3, pp. 384–394, 2005.
[131]  L. Saavedra, J. Svensson, V. Carballo, D. Izmendi, B. Welin, and S. Vidal, “A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance,” Plant Journal, vol. 45, no. 2, pp. 237–249, 2006.
[132]  A. C. Cuming, S. H. Cho, Y. Kamisugi, H. Graham, and R. S. Quatrano, “Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens,” New Phytologist, vol. 176, no. 2, pp. 275–287, 2007.
[133]  B. Garciadeblas, B. Benito, and A. Rodríguez-Navarro, “Plant cells express several stress calcium ATPases but apparently no sodium ATPase,” Plant and Soil, vol. 235, no. 2, pp. 181–192, 2001.
[134]  B. Benito and A. Rodríguez-Navarro, “Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens,” Plant Journal, vol. 36, no. 3, pp. 382–389, 2003.
[135]  C. Lunde, D. P. Drew, A. K. Jacobs, and M. Tester, “Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress,” Plant Physiology, vol. 144, no. 4, pp. 1786–1796, 2007.
[136]  F. J. M. Maathuis, “The role of monovalent cation transporters in plant responses to salinity,” Journal of Experimental Botany, vol. 57, no. 5, pp. 1137–1147, 2006.
[137]  M. P. Apse and E. Blumwald, “Engineering salt tolerance in plants,” Current Opinion in Biotechnology, vol. 13, no. 2, pp. 146–150, 2002.
[138]  K. Venema, A. Belver, M. C. Marín-Manzano, M. P. Rodríguez-Rosales, and J. P. Donaire, “A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22453–22459, 2003.
[139]  T. J. Flowers, “Improving crop salt tolerance,” Journal of Experimental Botany, vol. 55, no. 396, pp. 307–319, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133