Nucleosome positioning is not only related to genomic DNA compaction but also to other biological functions. After the chromatin is digested by micrococcal nuclease, nucleosomal (nucleosome-bound) DNA fragments can be sequenced and mapped on the genomic DNA sequence. Due to the development of modern DNA sequencing technology, genome-wide nucleosome mapping has been performed in a wide range of eukaryotic species. Comparative analyses of the nucleosome positions have revealed that the nucleosome is more frequently formed in exonic than intronic regions, and that most of transcription start and translation (or transcription) end sites are located in nucleosome linker DNA regions, indicating that nucleosome positioning influences transcription initiation, transcription termination, and gene splicing. In addition, nucleosomal DNA contains guanine and cytosine (G + C)-rich sequences and a high level of cytosine methylation. Thus, the nucleosome positioning system has been conserved during eukaryotic evolution. 1. Introduction Eukaryotic genomic DNA is packaged with histone proteins to form chromatin [1, 2]. The most fundamental repeating unit of chromatin is the nucleosome, which consists of an octamer of histones (2 copies of each histone protein: H2A, H2B, H3, and H4) and the genomic DNA wrapped around the octamer [3, 4]. Modification (e.g., acetylation, methylation, and phosphorylation) of the nucleosomal core histones influences chromatin structure and biological functions [5–7]. The modified nucleosome should be formed at the genomic position or in the genomic region. In this paper, I will focus on nucleosome positioning (not histone modification), because nucleosome positioning is not only related to compacting the genomic DNA but also to gene regulation [8–17]. Due to the development of DNA sequencing technology and genomic tiling array technology, genome-wide nucleosome mapping has been performed in a wide range of eukaryotic species, including the budding ascomycetous yeast, Saccharomyces cerevisiae [19]; the nematode, Caenorhabditis elegans [20]; the fruit fly, Drosophila melanogaster [21]; humans, Homo sapiens [22]; the malaria parasite, Plasmodium falciparum [23]; the filamentous ascomycete, Aspergillus fumigatus [24]; the fission ascomycetous yeast, Schizosaccharomyces pombe [25]; the plant, Arabidopsis thaliana [26]; several ascomycetous yeasts [27]; the mouse, Mus musculus [28]; the basidiomycete, Mixia osmundae [29]; the amoebozoa, Dictyostelium discoideum [30]. 2. Nucleosome Positioning and DNA Sequence Preference The DNA sequence plays an
References
[1]
R. D. Kornberg, “Structure of chromatin,” Annual Review of Biochemistry, vol. 46, pp. 931–954, 1977.
[2]
T. Igo-Kemenes, W. H?rz, and H. G. Zachau, “Chromatin,” Annual Review of Biochemistry, vol. 51, pp. 89–121, 1982.
[3]
K. Luger, A. W. M?der, R. K. Richmond, D. F. Sargent, and T. J. Richmond, “Crystal structure of the nucleosome core particle at 2.8 ? resolution,” Nature, vol. 389, no. 6648, pp. 251–260, 1997.
[4]
T. J. Richmond and C. A. Davey, “The structure of DNA in the nucleosome core,” Nature, vol. 423, no. 6936, pp. 145–150, 2003.
[5]
B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000.
[6]
T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001.
[7]
J. C. Rice and C. D. Allis, “Histone methylation versus histone acetylation: new insights into epigenetic regulation,” Current Opinion in Cell Biology, vol. 13, no. 3, pp. 263–273, 2001.
[8]
M. Han and M. Grunstein, “Nucleosome loss activates yeast downstream promoters in vivo,” Cell, vol. 55, no. 6, pp. 1137–1145, 1988.
[9]
M. Grunstein, “Histone function in transcription,” Annual Review of Cell Biology, vol. 6, pp. 643–678, 1990.
[10]
Q. Lu, L. L. Wallrath, and S. C. R. Elgin, “Nucleosome positioning and gene regulation,” Journal of Cellular Biochemistry, vol. 55, no. 1, pp. 83–92, 1994.
[11]
P. D. Gregory and W. H?rz, “Life with nucleosomes: chromatin remodelling in gene regulation,” Current Opinion in Cell Biology, vol. 10, no. 3, pp. 339–345, 1998.
[12]
J. J. Wyrick, F. C. P. Holstege, E. G. Jennings et al., “Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast,” Nature, vol. 402, no. 6760, pp. 418–421, 1999.
[13]
O. J. Rando and K. Ahmad, “Rules and regulation in the primary structure of chromatin,” Current Opinion in Cell Biology, vol. 19, no. 3, pp. 250–256, 2007.
[14]
I. Tirosh and N. Barkai, “Two strategies for gene regulation by promoter nucleosomes,” Genome Research, vol. 18, no. 7, pp. 1084–1091, 2008.
[15]
Y. Field, Y. Fondufe-Mittendorf, I. K. Moore et al., “Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization,” Nature Genetics, vol. 41, no. 4, pp. 438–445, 2009.
[16]
C. Jiang and B. F. Pugh, “Nucleosome positioning and gene regulation: advances through genomics,” Nature Reviews Genetics, vol. 10, no. 3, pp. 161–172, 2009.
[17]
L. Bai and A. V. Morozov, “Gene regulation by nucleosome positioning,” Trends in Genetics, vol. 26, no. 11, pp. 476–483, 2010.
[18]
K. Kryukov, K. Sumiyama, K. Ikeo, T. Gojobori, and N. Saitou, “A new database (GCD) on genome composition for eukaryote and prokaryote genome sequences and their initial analyses,” Genome Biology and Evolution, vol. 4, no. 4, pp. 501–512, 2012.
[19]
G.-C. Yuan, Y.-J. Liu, M. F. Dion et al., “Molecular biology: genome-scale identification of nucleosome positions in S. cerevisiae,” Science, vol. 309, no. 5734, pp. 626–630, 2005.
[20]
A. Valouev, J. Ichikawa, T. Tonthat et al., “A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning,” Genome Research, vol. 18, no. 7, pp. 1051–1063, 2008.
[21]
T. N. Mavrich, C. Jiang, I. P. Ioshikhes et al., “Nucleosome organization in the Drosophila genome,” Nature, vol. 453, no. 7193, pp. 358–362, 2008.
[22]
D. E. Schones, K. Cui, S. Cuddapah et al., “Dynamic regulation of nucleosome positioning in the human genome,” Cell, vol. 132, no. 5, pp. 887–898, 2008.
[23]
S. J. Westenberger, L. Cui, N. Dharia, E. Winzeler, and L. Cui, “Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes,” BMC Genomics, vol. 10, article 610, 2009.
[24]
H. Nishida, T. Motoyama, S. Yamamoto, H. Aburatani, and H. Osada, “Genome-wide maps of mono- and di-nucleosomes of Aspergillus fumigatus,” Bioinformatics, vol. 25, no. 18, pp. 2295–2297, 2009.
[25]
A. B. Lantermann, T. Straub, A. Str?lfors, G.-C. Yuan, K. Ekwall, and P. Korber, “Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae,” Nature Structural and Molecular Biology, vol. 17, no. 2, pp. 251–257, 2010.
[26]
R. K. Chodavarapu, S. Feng, Y. V. Bernatavichute et al., “Relationship between nucleosome positioning and DNA methylation,” Nature, vol. 466, no. 7304, pp. 388–392, 2010.
[27]
A. M. Tsankov, D. A. Thompson, A. Socha, A. Regev, and O. J. Rando, “The role of nucleosome positioning in the evolution of gene regulation,” PLoS Biology, vol. 8, no. 7, Article ID e1000414, 2010.
[28]
Z. Li, J. Schug, G. Tuteja, P. White, and K. H. Kaestner, “The nucleosome map of the mammalian liver,” Nature Structural and Molecular Biology, vol. 18, no. 6, pp. 742–746, 2011.
[29]
H. Nishida, S. Kondo, T. Matsumoto et al., “Characteristics of nucleosomes and linker DNA regions on the genome of the basidiomycete Mixia osmundae revealed by mono- and dinucleosome mapping,” Open Biology, vol. 2, Article ID 120043, 2012.
[30]
G. S. Chang, A. A. Noegel, T. N. Mavrich et al., “Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium,” Genome Research, vol. 22, no. 6, pp. 1098–1106, 2012.
[31]
H. R. Drew and A. A. Travers, “DNA bending and its relation to nucleosome positioning,” Journal of Molecular Biology, vol. 186, no. 4, pp. 773–790, 1985.
[32]
S. C. Satchwell, H. R. Drew, and A. A. Travers, “Sequence periodicities in chicken nucleosome core DNA,” Journal of Molecular Biology, vol. 191, no. 4, pp. 659–675, 1986.
[33]
P. T. Lowary and J. Widom, “New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning,” Journal of Molecular Biology, vol. 276, no. 1, pp. 19–42, 1998.
[34]
E. Segal, Y. Fondufe-Mittendorf, L. Chen et al., “A genomic code for nucleosome positioning,” Nature, vol. 442, no. 7104, pp. 772–778, 2006.
[35]
H. E. Peckham, R. E. Thurman, Y. Fu et al., “Nucleosome positioning signals in genomic DNA,” Genome Research, vol. 17, no. 8, pp. 1170–1177, 2007.
[36]
N. Kaplan, T. R. Hughes, J. D. Lieb, J. Widom, and E. Segal, “Contribution of histone sequence preferences to nucleosome organization: proposed definitions and methodology,” Genome Biology, vol. 11, no. 11, article 140, 2010.
[37]
I. Ioshikhes, S. Hosid, and B. F. Pugh, “Variety of genomic DNA patterns for nucleosome positioning,” Genome Research, vol. 21, no. 11, pp. 1863–11871, 2011.
[38]
A. Tsankov, Y. Yanagisawa, N. Rhind, A. Regev, and O. J. Rando, “Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization,” Genome Research, vol. 21, no. 11, pp. 1851–1862, 2011.
[39]
A. Valouev, S. M. Johnson, S. D. Boyd, C. L. Smith, A. Z. Fire, and A. Sidow, “Determinants of nucleosome organization in primary human cells,” Nature, vol. 474, no. 7352, pp. 516–520, 2011.
[40]
A. Stein, T. E. Takasuka, and C. K. Collings, “Are nucleosome positions in vivo primarily determined by histone-DNA sequence preferences?” Nucleic Acids Research, vol. 38, no. 3, pp. 709–719, 2010.
[41]
Y. Zhang, Z. Moqtaderi, B. P. Rattner et al., “Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo,” Nature Structural and Molecular Biology, vol. 16, no. 8, pp. 847–852, 2009.
[42]
N. Kaplan, I. Moore, Y. Fondufe-Mittendorf et al., “Nucleosome sequence preferences influence in vivo nucleosome organization,” Nature Structural and Molecular Biology, vol. 17, no. 8, pp. 918–920, 2010.
[43]
B. F. Pugh, “A preoccupied position on nucleosomes,” Nature Structural and Molecular Biology, vol. 17, no. 8, p. 923, 2010.
[44]
S. M. Johnson, F. J. Tan, H. L. McCullough, D. P. Riordan, and A. Z. Fire, “Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin,” Genome Research, vol. 16, no. 12, pp. 1505–1516, 2006.
[45]
W. Lee, D. Tillo, N. Bray et al., “A high-resolution atlas of nucleosome occupancy in yeast,” Nature Genetics, vol. 39, no. 10, pp. 1235–1244, 2007.
[46]
D. Tillo and T. R. Hughes, “G+C content dominates intrinsic nucleosome occupancy,” BMC Bioinformatics, vol. 10, article 442, 2009.
[47]
S. Rimsky and A. Travers, “Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins,” Current Opinion in Microbiology, vol. 14, no. 2, pp. 136–141, 2011.
[48]
T. Takeda, C.-S. Yun, M. Shintani, H. Yamane, and H. Nojiri, “Distribution of genes encoding nucleoid-associated protein homologs in plasmids,” International Journal of Evolutionary Biology, vol. 2011, Article ID 685015, 2011.
[49]
S. S. Ali, B. Xia, J. Liu, and W. W. Nararre, “Silencing of foreign DNA in bacteria,” Current Opinion in Microbiology, vol. 15, no. 2, pp. 175–181, 2012.
[50]
H. Nishida, “Genome DNA sequence variation, evolution, and function in bacteria and archaea,” Current Issues in Molecular Biology, vol. 15, no. 1, pp. 19–24, 2013.
[51]
B. E. Bernstein, C. L. Liu, E. L. Humphrey, E. O. Perlstein, and S. L. Schreiber, “Global nucleosome occupancy in yeast,” Genome Biology, vol. 5, no. 9, Article ID R62, 2004.
[52]
C.-K. Lee, Y. Shibata, B. Rao, B. D. Strahl, and J. D. Lieb, “Evidence for nucleosome depletion at active regulatory regions genome-wide,” Nature Genetics, vol. 36, no. 8, pp. 900–905, 2004.
[53]
H. Nishida, T. Suzuki, S. Kondo, H. Miura, Y. I. Fujimura, and Y. Hayashizaki, “Histone H3 acetylated at lysine 9 in promoter is associated with low nucleosome density in the vicinity of transcription start site in human cell,” Chromosome Research, vol. 14, no. 2, pp. 203–211, 2006.
[54]
T. N. Mavrich, I. P. Ioshikhes, B. J. Venters et al., “A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome,” Genome Research, vol. 18, no. 7, pp. 1073–1083, 2008.
[55]
S. Shivaswamy, A. Bhinge, Y. Zhao, S. Jones, M. Hirst, and V. R. Iyer, “Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation,” PLoS Biology, vol. 6, no. 3, Article ID e65, 2008.
[56]
H. Nishida, T. Motoyama, Y. Suzuki, S. Yamamoto, H. Aburatani, and H. Osada, “Genome-wide maps of mononucleosomes and dinucleosomes containing hyperacetylated histones of Aspergillus fumigatus,” PloS ONE, vol. 5, no. 3, Article ID e9916, 2010.
[57]
H. Nishida, “Conservation of nucleosome positions in duplicated and orthologous gene pairs,” The Scientific World Journal, vol. 2012, Article ID 298174, 2012.
[58]
A. Hughes and O. J. Rando, “Chromatin “programming” by sequence-is there more to the nucleosome code than %GC?” Journal of Biology, vol. 8, no. 11, article 96, 2009.
[59]
T. Gkikopoulos, P. Schofield, V. Singh et al., “A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization,” Science, vol. 333, no. 6050, pp. 1758–1760, 2011.
[60]
Z. Zhang, C. J. Wippo, M. Wal, E. Ward, P. Korber, and B. F. Pugh, “A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome,” Science, vol. 332, no. 6032, pp. 977–980, 2011.
[61]
I. Tirosh, N. Sigal, and N. Barkai, “Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences,” Molecular Systems Biology, vol. 6, article 365, 2010.
[62]
K. Tsui, S. Dubuis, M. Gebbia et al., “Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns,” Molecular and Cellular Biology, vol. 31, no. 21, pp. 4348–4355, 2011.
[63]
Y. Field, N. Kaplan, Y. Fondufe-Mittendorf et al., “Distinct modes of regulation by chromatin encoded through nucleosome positioning signals,” PLoS Computational Biology, vol. 4, no. 11, Article ID e1000216, 2008.
[64]
N. Kaplan, I. K. Moore, Y. Fondufe-Mittendorf et al., “The DNA-encoded nucleosome organization of a eukaryotic genome,” Nature, vol. 458, no. 7236, pp. 362–366, 2009.
[65]
K. Yen, V. Vinayachandran, K. Batta, R. T. Koerber, and B. F. Pugh, “Genome-wide nucleosome specificity and directionality of chromatin remodelers,” Cell, vol. 149, no. 7, pp. 1461–1473, 2012.
[66]
J. S. Beckmann and E. N. Trifonov, “Splice junctions follow a 205-base ladder,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2380–2383, 1991.
[67]
P. Baldi, S. Brunak, Y. Chauvin, and A. Krogh, “Naturally occurring nucleosome positioning signals in human exons and introns,” Journal of Molecular Biology, vol. 263, no. 4, pp. 503–510, 1996.
[68]
R. Andersson, S. Enroth, A. Rada-Iglesias, C. Wadelius, and J. Komorowski, “Nucleosomes are well positioned in exons and carry characteristic histone modifications,” Genome Research, vol. 19, no. 10, pp. 1732–1741, 2009.
[69]
S. Schwartz, E. Meshorer, and G. Ast, “Chromatin organization marks exon-intron structure,” Nature Structural and Molecular Biology, vol. 16, no. 9, pp. 990–995, 2009.
[70]
H. Tilgner, C. Nikolaou, S. Althammer et al., “Nucleosome positioning as a determinant of exon recognition,” Nature Structural and Molecular Biology, vol. 16, no. 9, pp. 996–1001, 2009.
[71]
W. Chen, L. Luo, and L. Zhang, “The organization of nucleosomes around splice sites,” Nucleic Acids Research, vol. 38, no. 9, pp. 2788–2798, 2010.
[72]
S. Schwartz and G. Ast, “Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing,” EMBO Journal, vol. 29, no. 10, pp. 1629–1636, 2010.
[73]
S. Kogan and E. N. Trifonov, “Gene splice sites correlate with nucleosome positions,” Gene, vol. 352, no. 1-2, pp. 57–62, 2005.