全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Regulation of GLUT4 and Insulin-Dependent Glucose Flux

DOI: 10.5402/2012/856987

Full-Text   Cite this paper   Add to My Lib

Abstract:

GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease. 1. Insulin-Dependent Glucose Flux The major physiologic action of insulin is to instruct tissues in the assimilation of dietary macronutrients and activate anabolic pathways that support growth and repair of tissues during the fed state. The actions of insulin on specific tissues vary depending both on the role that tissue plays in the assimilation of nutrients during the fed state, as well as the role that the tissue plays in the distribution of nutrients in the fasted state. The fasted state is defined as the period of time when the intestinal tract is no longer a significant source of nutrition. In the fed state, nutrients are being digested, absorbed and delivered to the body from the intestinal tract. In the fasted state, fatty acids and glycerol are released from adipose tissue, amino acids from skeletal muscle, and glucose from the liver. Therefore, liver, adipose tissue, and skeletal muscle, each play a very important role in exogenous nutrient assimilation after a meal, and the redistribution of endogenous nutrients during fasting. While insulin regulates the assimilation and distribution of all nutrients, insulin action is generally quantified through changes in glucose homeostasis. Insulin action also regulates amino acid uptake, protein synthesis, fatty acid uptake, fatty acid synthesis, and cholesterol synthesis through direct actions on the pathways that regulate these processes. The assessment of insulin sensitivity is only predicted through comparisons of blood glucose and blood insulin levels [1]; more, specifically, insulin resistance is inferred by observation of elevated plasma glucose levels following an overnight fast. The prevailing insulin levels in the fasted state reflect the Beta-cell response to hepatic glucose production. Plasma insulin levels in the fasted state will, in turn, feedback to modulate hepatic glucose production [2]. Thus, understanding the disposal of dietary glucose after a meal, and the regulation of hepatic glucose production during fasting are of considerable interest in the treatment and prevention of insulin resistance and type 2 diabetes. After consuming a full-meal,

References

[1]  D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985.
[2]  S. T. McCarthy, E. Harris, and R. C. Turner, “Glucose control of basal insulin secretion in diabetes,” Diabetologia, vol. 13, no. 2, pp. 93–97, 1977.
[3]  A. B. Fernandes, R. S. Patarrao, P. A. Videira, and M. P. Macedo, “Understanding post-prandial glucose clearance by peripheral organs: the role of the hepatic parasympathetic system,” Journal of Neuroendocrinology, vol. 23, pp. 1288–1295, 2011.
[4]  B. Thorens, Z. Q. Cheng, D. Brown, and H. F. Lodish, “Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells,” American Journal of Physiology, vol. 259, no. 2, pp. C279–C285, 1990.
[5]  B. Thorens, H. K. Sarkar, H. R. Kaback, and H. F. Lodish, “Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells,” Cell, vol. 55, no. 2, pp. 281–290, 1988.
[6]  J. Vinten, J. Gliemann, and K. Osterlind, “Exchange of 3-O-methylglucose in isolated fat cells,” Journal of Biological Chemistry, vol. 251, no. 3, pp. 794–800, 1976.
[7]  S. W. Cushman and L. J. Wardzala, “Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell,” Journal of Biological Chemistry, vol. 255, no. 10, pp. 4758–4762, 1980.
[8]  K. Suzuki and T. Kono, “Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 5 I, pp. 2542–2545, 1980.
[9]  D. E. James, R. Brown, J. Navarro, and P. F. Pilch, “Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein,” Nature, vol. 333, no. 6169, pp. 183–185, 1988.
[10]  M. J. Birnbaum, “Identification of a novel gene encoding an insulin-responsive glucose transporter protein,” Cell, vol. 57, no. 2, pp. 305–315, 1989.
[11]  M. J. Charron, F. C. Brosius, S. L. Alper, and H. F. Lodish, “A glucose transport protein expressed predominately in insulin-responsive tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 8, pp. 2535–2539, 1989.
[12]  D. E. James, M. Strube, and M. Mueckler, “Molecular cloning and characterization of an insulin-regulatable glucose transporter,” Nature, vol. 338, no. 6210, pp. 83–87, 1989.
[13]  S. H. Purcell, L. B. Aerni-Flessner, A. R. Willcockson, K. A. Diggs-Andrews, S. J. Fisher, and K. H. Moley, “Improved insulin sensitivity by GLUT12 overexpression in mice,” Diabetes, vol. 60, no. 5, pp. 1478–1482, 2011.
[14]  S. Rogers, M. L. Macheda, S. E. Docherty et al., “Identification of a novel glucose transporter-like protein—GLUT-12,” American Journal of Physiology, vol. 282, no. 3, pp. E733–E738, 2002.
[15]  C. A. Stuart, M. E. A. Howell, Y. Zhang, and D. Yin, “Insulin-stimulated translocation of glucose transporter (GLUT) 12 parallels that of GLUT4 in normal muscle,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3535–3542, 2009.
[16]  E. B. Katz, A. E. Stenbit, K. Hatton, R. DePinho, and M. J. Charron, “Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4,” Nature, vol. 377, no. 6545, pp. 151–155, 1995.
[17]  C. A. Millar, T. Meerloo, S. Martin et al., “Adipsin and the glucose transporter GLUT4 traffic to the cell surface via independent pathways in adipocytes,” Traffic, vol. 1, no. 2, pp. 141–151, 2000.
[18]  K. V. Kandror, L. Coderre, A. V. Pushkin, and P. F. Pilch, “Comparison of glucose-transporter-containing vesicles from rat fat and muscle tissues: evidence for a unique endosomal compartment,” Biochemical Journal, vol. 307, no. 2, pp. 383–390, 1995.
[19]  S. Lund, G. D. Holman, O. Schmitz, and O. Pedersen, “Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 5817–5821, 1995.
[20]  J. W. Slot, H. J. Geuze, S. Gigengack, D. E. James, and G. E. Lienhard, “Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7815–7819, 1991.
[21]  J. W. Slot, H. J. Geuze, S. Gigengack, G. E. Lienhard, and D. E. James, “Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat,” Journal of Cell Biology, vol. 113, no. 1, pp. 123–135, 1991.
[22]  C. Livingstone, D. E. James, J. E. Rice, D. Hanpeter, and G. W. Gould, “Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes,” Biochemical Journal, vol. 315, no. 2, pp. 487–495, 1996.
[23]  S. Martin, J. Tellam, C. Livingstone, J. W. Slot, G. W. Gould, and D. E. James, “The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin- sensitive cells,” Journal of Cell Biology, vol. 134, no. 3, pp. 625–635, 1996.
[24]  A. K. El-Jack, K. V. Kandror, and P. F. Pilch, “The formation of an insulin-responsive vesicular cargo compartment is an early event in 3T3-L1 adipocyte differentiation,” Molecular Biology of the Cell, vol. 10, no. 5, pp. 1581–1594, 1999.
[25]  H. Al-Hasani, C. S. Hinck, and S. W. Cushman, “Endocytosis of the glucose transporter GLUT4 is mediated by the GTPase dynamin,” Journal of Biological Chemistry, vol. 273, no. 28, pp. 17504–17510, 1998.
[26]  D. Williams and J. E. Pessin, “Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes,” Journal of Cell Biology, vol. 180, no. 2, pp. 375–387, 2008.
[27]  M. A. Lampson, J. Schmoranzer, A. Zeigerer, S. M. Simon, and T. E. McGraw, “Insulin-regulated release from the endosomal recycling compartment is regulated by budding of specialized vesicles,” Molecular Biology of the Cell, vol. 12, no. 11, pp. 3489–3501, 2001.
[28]  T. A. Kupriyanova, V. Kandror, and K. V. Kandror, “Isolation and characterization of the two major intracellular Glut4 storage compartments,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9133–9138, 2002.
[29]  A. Zeigerer, M. A. Lampson, O. Karylowski et al., “GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps,” Molecular Biology of the Cell, vol. 13, no. 7, pp. 2421–2435, 2002.
[30]  A. M. Shewan, E. M. Van Dam, S. Martin et al., “GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in Syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif,” Molecular Biology of the Cell, vol. 14, no. 3, pp. 973–986, 2003.
[31]  N. J. Bryant, R. Govers, and D. E. James, “Regulated transport of the glucose transporter GLUT4,” Nature Reviews Molecular Cell Biology, vol. 3, no. 4, pp. 267–277, 2002.
[32]  M. Hashiramoto and D. E. James, “Characterization of insulin-responsive GLUT4 storage vesicles isolated from 3T3-L1 adipocytes,” Molecular and Cellular Biology, vol. 20, no. 1, pp. 416–427, 2000.
[33]  L. J. Robinson, S. Pang, D. S. Harris, J. Heuser, and D. E. James, “Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP, insulin, and GTPγS and localization of GLUT4 to clathrin lattices,” Journal of Cell Biology, vol. 117, no. 6, pp. 1181–1196, 1992.
[34]  G. D. Holman, L. L. Leggio, and S. W. Cushman, “Insulin-stimulated GLUT4 glucose transporter recycling. A problem in membrane protein subcellular trafficking through multiple pools,” Journal of Biological Chemistry, vol. 269, no. 26, pp. 17516–17524, 1994.
[35]  J. Yang and G. D. Holman, “Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells,” Journal of Biological Chemistry, vol. 268, no. 7, pp. 4600–4603, 1993.
[36]  M. P. Czech and J. M. Buxton, “Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes,” Journal of Biological Chemistry, vol. 268, no. 13, pp. 9187–9190, 1993.
[37]  D. E. James, “MUNC-ing around with insulin action,” Journal of Clinical Investigation, vol. 115, no. 2, pp. 219–221, 2005.
[38]  J. L. Jewell, E. Oh, L. Ramalingam et al., “Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis,” Journal of Cell Biology, vol. 193, no. 1, pp. 185–199, 2011.
[39]  S. Semiz, J. G. Park, S. M. C. Nicoloro et al., “Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules,” EMBO Journal, vol. 22, no. 10, pp. 2387–2399, 2003.
[40]  J. S. Bogan, N. Hendon, A. E. McKee, T. S. Tsao, and H. F. Lodish, “Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking,” Nature, vol. 425, no. 6959, pp. 727–733, 2003.
[41]  C. A. Eyster, Q. S. Duggins, G. J. Gorbsky, and A. L. Olson, “Microtubule network is required for insulin signaling through activation of Akt/protein kinase B: evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility,” Journal of Biological Chemistry, vol. 281, no. 51, pp. 39719–39727, 2006.
[42]  V. A. Lizunov, H. Matsumoto, J. Zimmerberg, S. W. Cushman, and V. A. Frolov, “Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells,” Journal of Cell Biology, vol. 169, no. 3, pp. 481–489, 2005.
[43]  S. Huang, L. M. Lifshitz, C. Jones et al., “Insulin stimulates membrane fusion and GLUT4 accumulation in clathrin coats on adipocyte plasma membranes,” Molecular and Cellular Biology, vol. 27, no. 9, pp. 3456–3469, 2007.
[44]  L. Bai, Y. Wang, J. Fan et al., “Dissecting multiple steps of GLUT4 trafficking and identifying the sites of insulin action,” Cell Metabolism, vol. 5, no. 1, pp. 47–57, 2007.
[45]  B. Cheatham and C. R. Kahn, “Insulin action and the insulin signaling network,” Endocrine Reviews, vol. 16, no. 2, pp. 117–142, 1995.
[46]  M. F. White, “The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action,” Recent Progress in Hormone Research, vol. 53, pp. 119–138, 1998.
[47]  L. Chang, S. H. Chiang, and A. R. Saltiel, “Insulin signaling and the regulation of glucose transport,” Molecular Medicine, vol. 10, no. 7-12, pp. 65–71, 2004.
[48]  D. J. Withers, J. S. Gutierrez, H. Towery et al., “Disruption of IRS-2 causes type 2 diabetes in mice,” Nature, vol. 391, no. 6670, pp. 900–904, 1998.
[49]  M. Fasshauer, J. Klein, K. Ueki et al., “Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25494–25501, 2000.
[50]  M. G. Myers Jr., L. M. Wang, X. J. Sun et al., “Role of IRS-1-GRB-2 complexes in insulin signaling,” Molecular and Cellular Biology, vol. 14, no. 6, pp. 3577–3587, 1994.
[51]  J. M. Backer, J. M. G. Myers Jr., S. E. Shoelson et al., “Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during insulin stimulation,” EMBO Journal, vol. 11, no. 9, pp. 3469–3479, 1992.
[52]  A. R. Saltiel and C. R. Kahn, “Insulin signalling and the regulation of glucose and lipid metabolism,” Nature, vol. 414, no. 6865, pp. 799–806, 2001.
[53]  G. I. Welsh, I. Hers, D. C. Berwick et al., “Role of protein kinase B in insulin-regulated glucose uptake,” Biochemical Society Transactions, vol. 33, no. 2, pp. 346–349, 2005.
[54]  Q. I. Zhou, J. G. Park, Z. Y. Jiang et al., “Analysis of insulin signalling by RNAi-based gene silencing,” Biochemical Society Transactions, vol. 32, no. 5, pp. 817–821, 2004.
[55]  S. Masure, B. Haefner, J. J. Wesselink et al., “Molecular cloning, expression and characterization of the human serine/threonine kinase Akt-3,” European Journal of Biochemistry, vol. 265, no. 1, pp. 353–360, 1999.
[56]  A. D. Kohn, S. A. Summers, M. J. Birnbaum, and R. A. Roth, “Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation,” Journal of Biological Chemistry, vol. 271, no. 49, pp. 31372–31378, 1996.
[57]  H. Cho, J. Mu, J. K. Kim et al., “Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ),” Science, vol. 292, no. 5522, pp. 1728–1731, 2001.
[58]  M. P. Czech and S. Corvera, “Signaling mechanisms that regulate glucose transport,” Journal of Biological Chemistry, vol. 274, no. 4, pp. 1865–1868, 1999.
[59]  T. Yamada, H. Katagiri, T. Asano et al., “Role of PDK1 in insulin-signaling pathway for glucose metabolism in 3T3-L1 adipocytes,” American Journal of Physiology. Endocrinology and Metabolism, vol. 282, no. 6, pp. E1385–E1394, 2002.
[60]  L. Q. Dong and F. Liu, “PDK2: the missing piece in the receptor tyrosine kinase signaling pathway puzzle,” American Journal of Physiology. Endocrinology and Metabolism, vol. 289, no. 2, pp. E187–E196, 2005.
[61]  D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, “Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex,” Science, vol. 307, no. 5712, pp. 1098–1101, 2005.
[62]  R. C. Hresko and M. Mueckler, “mTOR·RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 280, no. 49, pp. 40406–40416, 2005.
[63]  V. Zinzalla, D. Stracka, W. Oppliger, and M. N. Hall, “Activation of mTORC2 by association with the ribosome,” Cell, vol. 144, no. 5, pp. 757–768, 2011.
[64]  R. C. Hresko, H. Murata, and M. Mueckler, “Phosphoinositide-dependent kinase-2 is a distinct protein kinase in a novel cytoskeletal fraction associated with adipocyte plasma membranes,” Journal of Biological Chemistry, vol. 278, no. 24, pp. 21615–21622, 2003.
[65]  M. P. Scheid, P. A. Marignani, and J. R. Woodgett, “Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B,” Molecular and Cellular Biology, vol. 22, no. 17, pp. 6247–6260, 2002.
[66]  A. Kumar, J. C. Lawrence Jr., D. Y. Jung et al., “Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism,” Diabetes, vol. 59, no. 6, pp. 1397–1406, 2010.
[67]  S. Kane, H. Sano, S. C. H. Liu et al., “A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22115–22118, 2002.
[68]  M. Zerial and H. McBride, “Rab proteins as membrane organizers,” Nature Reviews Molecular Cell Biology, vol. 2, no. 2, pp. 107–117, 2001.
[69]  H. Sano, S. Kane, E. Sano et al., “Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation,” Journal of Biological Chemistry, vol. 278, no. 17, pp. 14599–14602, 2003.
[70]  M. Larance, G. Ramm, J. St?ckli et al., “Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking,” Journal of Biological Chemistry, vol. 280, no. 45, pp. 37803–37813, 2005.
[71]  H. Sano, L. Eguez, M. N. Teruel et al., “Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane,” Cell Metabolism, vol. 5, no. 4, pp. 293–303, 2007.
[72]  H. Sano, W. G. Roach, G. R. Peck, M. Fukuda, and G. E. Lienhard, “Rab10 in insulin-stimulated GLUT4 translocation,” Biochemical Journal, vol. 411, no. 1, pp. 89–95, 2008.
[73]  Y. Chen, Y. Wang, J. Zhang et al., “Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle trasnlocation in adipocytes,” The Journal of Cell Biology, vol. 198, pp. 545–560, 2012.
[74]  D. H. Wasserman, L. Kang, J. E. Ayala, P. T. Fueger, and R. S. Lee-Young, “The physiological regulation of glucose flux into muscle in vivo,” Journal of Experimental Biology, vol. 214, no. 2, pp. 254–262, 2011.
[75]  R. M. O'Doherty, D. P. Bracy, H. Osawa, D. H. Wasserman, and D. K. Granner, “Rat skeletal muscle hexokinase II mRNA and activity are increased by a single bout of acute exercise,” American Journal of Physiology, vol. 266, no. 2, pp. E171–E178, 1994.
[76]  P. T. Fueger, H. S. Hess, K. A. Posey et al., “Control of exercise-stimulated muscle glucose uptake by GLUT4 is dependent on glucose phosphorylation capacity in the conscious mouse,” Journal of Biological Chemistry, vol. 279, no. 49, pp. 50956–50961, 2004.
[77]  M. L. Liu, E. M. Gibbs, S. C. McCoid et al., “Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 11346–11350, 1993.
[78]  P. R. Shepherd, L. Gnudi, E. Tozzo, H. Yang, F. Leach, and B. B. Kahn, “Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue,” Journal of Biological Chemistry, vol. 268, no. 30, pp. 22243–22246, 1993.
[79]  T. S. Tsao, A. E. Stenbit, J. Li et al., “Muscle-specific transgenic complementation of GLUT4-deficient mice: effects on glucose but not lipid metabolism,” Journal of Clinical Investigation, vol. 100, no. 3, pp. 671–677, 1997.
[80]  E. D. Abel, H. C. Kaulbach, R. Tian et al., “Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart,” Journal of Clinical Investigation, vol. 104, no. 12, pp. 1703–1714, 1999.
[81]  E. B. Katz, A. E. Stenbit, K. Hatton, R. DePinho, and M. J. Charron, “Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4,” Nature, vol. 377, no. 6545, pp. 151–155, 1995.
[82]  Y. Li, A. R. Wende, O. Nunthakungwan et al., “Cytosolic, but not mitochondrial, oxidative stress is a likely contributer to cardiac hypertrophy resulting form cardiac specific GLUT4 deletion in mice,” FEBS Journal, vol. 279, pp. 599–611, 2012.
[83]  S. Ikemoto, K. S. Thompson, M. Takahashi, H. Itakura, M. D. Lane, and O. Ezaki, “High fat diet-induced hyperglycemia: prevention by low level expression of a glucose transporter (GLUT4) minigene in transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 8, pp. 3096–3099, 1995.
[84]  W. T. Garvey, L. Maianu, T. P. Huecksteadt, M. J. Birnbaum, J. M. Molina, and T. P. Ciaraldi, “Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity,” Journal of Clinical Investigation, vol. 87, no. 3, pp. 1072–1081, 1991.
[85]  J. Berger, C. Biswas, P. P. Vicario, H. V. Strout, R. Saperstein, and P. F. Pilch, “Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting,” Nature, vol. 340, no. 6228, pp. 70–72, 1989.
[86]  S. W. Cushman and L. J. Wardzala, “Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane,” Journal of Biological Chemistry, vol. 255, no. 10, pp. 4758–4762, 1980.
[87]  W. I. Sivitz, S. L. DeSautel, T. Kayano, G. I. Bell, and J. E. Pessin, “Regulation of glucose transporter messenger RNA in insulin-deficient states,” Nature, vol. 340, no. 6228, pp. 72–74, 1989.
[88]  E. D. Abel, O. Peroni, J. K. Kim et al., “Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver,” Nature, vol. 409, no. 6821, pp. 729–733, 2001.
[89]  R. A. De Fronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren, and J. P. Felber, “The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization,” Diabetes, vol. 30, no. 12, pp. 1000–1007, 1981.
[90]  J. L. Treadway, D. M. Hargrove, N. A. Nardone et al., “Enhanced peripheral glucose utilization in transgenic mice expressing the human GLUT4 gene,” Journal of Biological Chemistry, vol. 269, no. 47, pp. 29956–29961, 1994.
[91]  A. Zisman, O. D. Peroni, E. D. Abel et al., “Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance,” Nature Medicine, vol. 6, no. 8, pp. 924–928, 2000.
[92]  C. B. Hollenbeck, Y. D. I. Chen, and G. M. Reaven, “A comparison of the relative effects of obesity and non-insulin-dependent diabetes mellitus on in vivo insulin-stimulated glucose utilization,” Diabetes, vol. 33, no. 7, pp. 622–626, 1984.
[93]  M. Pendergrass, A. Bertoldo, R. Bonadonna et al., “Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals,” American Journal of Physiology. Endocrinology and Metabolism, vol. 292, no. 1, pp. E92–E100, 2007.
[94]  B. B. Kahn, “Dietary regulation of glucose transporter gene expression: tissue specific effects in adipose cells and muscle,” Journal of Nutrition, vol. 124, no. 8, pp. 1289S–1295S, 1994.
[95]  P. A. Hansen, D. H. Han, B. A. Marshall et al., “A high fat diet impairs stimulation of glucose transport in muscle: functional evaluation of potential mechanisms,” Journal of Biological Chemistry, vol. 273, no. 40, pp. 26157–26163, 1998.
[96]  J. O. Holloszy, “Regulation by exercise of skeletal muscle content of mitochondria and GLUT4,” Journal of Physiology and Pharmacology, vol. 59, no. 7, pp. 5–18, 2008.
[97]  J. R. Zierath, T. S. Tsao, A. E. Stenbit, J. W. Ryder, D. Galuska, and M. J. Charron, “Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficient muscles by muscle-specific GLUT4 transgenic complementation,” Journal of Biological Chemistry, vol. 273, no. 33, pp. 20910–20915, 1998.
[98]  J. W. Ryder, Y. Kawano, D. Galuska et al., “Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice,” FASEB Journal, vol. 13, no. 15, pp. 2246–2256, 1999.
[99]  A. Leturque, M. Loizeau, S. Vaulont, M. Salminen, and J. Girard, “Improvement of insulin action in diabetic transgenic mice selectively overexpressing GLUT4 in skeletal muscle,” Diabetes, vol. 45, no. 1, pp. 23–27, 1996.
[100]  J. T. Brozinick, S. C. McCoid, T. H. Reynolds et al., “GLUT4 overexpression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure,” Diabetes, vol. 50, no. 3, pp. 593–600, 2001.
[101]  B. A. Marshall, P. A. Hansen, N. J. Ensor, M. A. Ogden, and M. Mueckler, “GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance,” American Journal of Physiology. Endocrinology and Metabolism, vol. 276, no. 2, pp. E390–E400, 1999.
[102]  L. M. Semeniuk, A. J. Kryski, and D. L. Severson, “Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 283, no. 3, pp. H976–H982, 2002.
[103]  E. Tozzo, L. Gnudi, and B. B. Kahn, “Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter,” Endocrinology, vol. 138, no. 4, pp. 1604–1611, 1997.
[104]  L. Gnudi, D. R. Jensen, E. Tozzo, R. H. Eckel, and B. B. Kahn, “Adipose-specific overexpression of GLUT-4 in transgenic mice alters lipoprotein lipase activity,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 270, no. 4, pp. R785–R792, 1996.
[105]  T. S. Tsao, R. Burcelin, E. B. Katz, L. Huang, and M. J. Charron, “Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle,” Diabetes, vol. 45, no. 1, pp. 28–36, 1996.
[106]  M. A. Herman, O. D. Peroni, J. Villoria et al., “A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism,” Nature, vol. 484, pp. 333–340, 2012.
[107]  A. L. Olson, M.-L. Liu, W. S. Moye-Rowley, J. B. Buse, G. I. Bell, and J. E. Pessin, “Hormonal/metabolic regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice,” Journal of Biological Chemistry, vol. 268, no. 13, pp. 9839–9846, 1993.
[108]  L. J. Goodyear, M. F. Hirshman, P. M. Valyou, and E. S. Horton, “Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training,” Diabetes, vol. 41, no. 9, pp. 1091–1099, 1992.
[109]  P. D. Neufer, M. H. Shinebarger, and G. L. Dohm, “Effect of training and detraining on skeletal muscle glucose transporter (GLUT4) content in rats,” Canadian Journal of Physiology and Pharmacology, vol. 70, no. 9, pp. 1286–1290, 1992.
[110]  K. J. Rodnick, E. J. Henriksen, D. E. James, and J. O. Holloszy, “Exercise training, glucose transporters, and glucose transport in rat skeletal muscles,” American Journal of Physiology. Cell Physiology, vol. 262, no. 1, pp. C9–C14, 1992.
[111]  K. F. Petersen, S. Dufour, D. Befroy, M. Lehrke, R. E. Hendler, and G. I. Shulman, “Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes,” Diabetes, vol. 54, no. 3, pp. 603–608, 2005.
[112]  E. M. Gibbs, J. L. Stock, S. C. McCoid et al., “Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4),” Journal of Clinical Investigation, vol. 95, no. 4, pp. 1512–1518, 1995.
[113]  T. Santalucia, M. Camps, A. Castello et al., “Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue,” Endocrinology, vol. 130, no. 2, pp. 837–846, 1992.
[114]  A. L. Olson, “Regulated of GLUT4 transcription and gene expression,” Current Medicinal Chemistry. Immunology, Endocrine & Metabolic Agents, vol. 5, pp. 219–225, 2005.
[115]  A. L. Olson and J. B. Knight, “Regulation of GLUT4 expression in vivo and in vitro,” Frontiers in Bioscience, vol. 8, pp. s401–s409, 2003.
[116]  J. M. Richardson, T. W. Balon, J. L. Treadway, and J. E. Pessin, “Differential regulation of glucose transporter activity and expression in red and white skeletal muscle,” Journal of Biological Chemistry, vol. 266, no. 19, pp. 12690–12694, 1991.
[117]  M. J. Charron and B. B. Kahn, “Divergent molecular mechanisms for insulin-resistant glucose transport in muscle and adipose cells in vivo,” Journal of Biological Chemistry, vol. 265, no. 14, pp. 7994–8000, 1990.
[118]  P. M. Gerrits, A. L. Olson, and J. E. Pessin, “Regulation of the GLUT4/muscle-fat glucose transporter mRNA in adipose tissue of insulin-deficient diabetic rats,” Journal of Biological Chemistry, vol. 268, no. 1, pp. 640–644, 1993.
[119]  P. D. Neufer, J. O. Carey, and G. L. Dohm, “Transcriptional regulation of the gene for glucose transporter GLUT4 in skeletal muscle. Effects of diabetes and fasting,” Journal of Biological Chemistry, vol. 268, no. 19, pp. 13824–13829, 1993.
[120]  J. M. Ren, C. F. Semenkovich, E. A. Gulve, J. Gao, and J. O. Holloszy, “Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle,” Journal of Biological Chemistry, vol. 269, no. 20, pp. 14396–14401, 1994.
[121]  K. Kawanaka, I. Tabata, S. Katsuta, and M. Higuchi, “Changes in insulin-stimulated glucose transport and GLUT-4 protein in rat skeletal muscle after training,” Journal of Applied Physiology, vol. 83, no. 6, pp. 2043–2047, 1997.
[122]  H. H. Host, P. A. Hansen, L. A. Nolte, M. M. Chen, and J. O. Holloszy, “Rapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation,” Journal of Applied Physiology, vol. 84, no. 3, pp. 798–802, 1998.
[123]  B. F. Holmes, D. B. Lang, M. J. Birnbaum, J. Mu, and G. L. Dohm, “AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle,” American Journal of Physiology. Endocrinology and Metabolism, vol. 287, no. 4, pp. E739–E743, 2004.
[124]  J. R. Flores-Riveros, K. H. Kaestner, K. S. Thompson, and M. D. Lane, “Cyclic AMP-induced transcription repression of the insulin-responsive glucose transporter (GLUT4) gene: identification of a promoter region required for down-regulation of transcription,” Biochemical and Biophysical Research Communications, vol. 194, no. 3, pp. 1148–1154, 1993.
[125]  D. M. Calderhead, K. Kitagawa, L. I. Tanner, G. D. Holman, and G. E. Lienhard, “Insulin regulation of the two glucose transporters in 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 265, no. 23, pp. 13800–13808, 1990.
[126]  A. Garcia De Herreros and M. J. Birnbaum, “The regulation by insulin of glucose transporter gene expression in 3T3 adipocytes,” Journal of Biological Chemistry, vol. 264, no. 17, pp. 9885–9890, 1989.
[127]  Y. Mitsumoto and A. Klip, “Developmental regulation of the subcellular distribution and glycosylation of GLUT1 and GLUT4 glucose transporters during myogenesis of L6 muscle cells,” Journal of Biological Chemistry, vol. 267, no. 7, pp. 4957–4962, 1992.
[128]  M. L. Liu, A. L. Olson, N. P. Edgington, W. S. Moye-Rowley, and J. E. Pessin, “Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene,” Journal of Biological Chemistry, vol. 269, no. 45, pp. 28514–28521, 1994.
[129]  J. M. Richardson and J. E. Pessin, “Identification of a skeletal muscle-specific regulatory domain in the rat GLUT4/muscle-fat gene,” Journal of Biological Chemistry, vol. 268, no. 28, pp. 21021–21027, 1993.
[130]  J. B. Knight, C. A. Eyster, B. A. Griesel, and A. L. Olson, “Regulation of the human GLUT4 gene promoter: interaction between a transcriptional activator and myocyte enhancer factor 2A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 14725–14730, 2003.
[131]  D. W. Cooke and M. D. Lane, “A sequence element in the GLUT4 gene that mediates repression by insulin,” Journal of Biological Chemistry, vol. 273, no. 11, pp. 6210–6217, 1998.
[132]  D. P. Sparling, B. A. Griesel, J. Weems, and A. L. Olson, “GLUT4 Enhancer Factor (GEF) interacts with MEF2A and HDAC5 to regulate the GLUT4 promoter in adipocytes,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7429–7437, 2008.
[133]  J. Weems and A. L. Olson, “Class II histone deacetylases limit GLUT4 gene expression during adipocyte differentiation,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 460–468, 2011.
[134]  M. L. Liu, A. L. Olson, W. S. Moye-Rowley, J. B. Buse, G. I. Bell, and J. E. Pessin, “Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice,” Journal of Biological Chemistry, vol. 267, no. 17, pp. 11673–11676, 1992.
[135]  M. V. Thai, S. Guruswamy, K. T. Cao, J. E. Pessin, and A. L. Olson, “Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice: regulation of MEF2 DNA binding activity in insulin-deficient diabetes,” Journal of Biological Chemistry, vol. 273, no. 23, pp. 14285–14292, 1998.
[136]  A. L. Olson, N. P. Edgington, W. S. Moye-Rowley, and J. E. Pessin, “Characterization of 5'-heterogeneity of the rat GLUT4/muscle-adipose glucose transporter gene product,” Endocrinology, vol. 136, no. 5, pp. 1962–1968, 1995.
[137]  A. L. Olson and J. E. Pessin, “Transcriptional regulation of the human GLUT4 gene promoter in diabetic transgenic mice,” Journal of Biological Chemistry, vol. 270, no. 40, pp. 23491–23495, 1995.
[138]  K. M. Oshel, J. B. Knight, K. T. Cao, M. V. Thai, and A. L. Olson, “Identification of a 30-base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice,” Journal of Biological Chemistry, vol. 275, no. 31, pp. 23666–23673, 2000.
[139]  D. P. Sparling, B. A. Griesel, and A. L. Olson, “Hyperphosphorylation of MEF2A in primary adipocytes correlates with downregulation of human GLUT4 gene promoter activity,” American Journal of Physiology. Endocrinology and Metabolism, vol. 292, no. 4, pp. E1149–E1156, 2007.
[140]  S. L. McGee, D. Sparling, A. L. Olson, and M. Hargreaves, “Exercise increases MEF2- and GEF DNA-binding activity in human skeletal muscle,” FASEB Journal, vol. 20, no. 2, pp. 348–349, 2006.
[141]  S. L. McGee, B. J. W. Van Denderen, K. F. Howlett et al., “AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5,” Diabetes, vol. 57, no. 4, pp. 860–867, 2008.
[142]  S. L. McGee, E. Fairlie, A. P. Garnham, and M. Hargreaves, “Exercise-induced histone modifications in human skeletal muscle,” Journal of Physiology, vol. 587, no. 24, pp. 5951–5958, 2009.
[143]  J. C. Weems, B. A. Griesel, and A. L. Olson, “Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice,” Diabetes, vol. 61, pp. 1404–1414, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133