Voltage-gated L-type Cav1.2 calcium channels couple membrane depolarization to transient increase in cytoplasmic free Ca2+ concentration that initiates a number of essential cellular functions including cardiac and vascular muscle contraction, gene expression, neuronal plasticity, and exocytosis. Inactivation or spontaneous termination of the calcium current through Cav1.2 is a critical step in regulation of these processes. The pathophysiological significance of this process is manifested in hypertension, heart failure, arrhythmia, and a number of other diseases where acceleration of the calcium current decay should present a benefit function. The central issue of this paper is the inactivation of the Cav1.2 calcium channel mediated by multiple determinants. 1. Introduction The voltage-gated inward Ca2+ current ( ) is a common mechanism of transient increase in the cytoplasmic free Ca2+ concentration triggered by cell depolarization. This form of Ca2+ signaling activates essential cellular processes including cardiac contraction [1], regulation of a smooth muscle tone [2], gene expression [3], synaptic plasticity [4] and exocytosis [5]. Complete and rapid termination of Ca2+ influx is mediated by an intricate mechanism of spontaneous calcium channel inactivation, which is crucial for preventing Ca2+ overloading of the cell during action potentials and restoration of the resting sub-μM cytoplasmic free Ca2+ concentration [6]. This paper will focus on the molecular basis and multiple determinants of the Cav1.2 calcium channel inactivation. 2. Cav1.2: Challenges and Solutions 2.1. Molecular Complexity The Cav1.2 calcium channel is an oligomeric complex composed of the α1C, α2δ, and β subunits [7, 8]. The ion channel pore is formed by the α1C peptide (Figure 1) that is encoded by the CACNA1C gene. The auxiliary β and α2δ subunits are essential for the functional expression and plasma membrane (PM) targeting of the channel [9, 10]. They exist in multiple genomic isoforms generated by four CACNB genes (CACNB1–4) and three CACNA2D genes (CACNA2D1–3). All three subunits are subject to alternative splicing. Adding to the complexity of the Cav1.2 molecular organization, β subunits tend to oligomerize [11]. All together, genomic variability, alternative splicing, and hetero-oligomerization generate a plethora of Cav1.2 splice variants that are expressed in cells in species-, tissue-, and developmental-dependent manner, while the change of their fine balance may have significant pathophysiological consequences [12, 13]. Figure 1: Transmembrane topology of the α 1C
References
[1]
D. M. Bers, “Calcium cycling and signaling in cardiac myocytes,” Annual Review of Physiology, vol. 70, no. 1, pp. 23–49, 2008.
[2]
M. T. Nelson, N. B. Standen, J. E. Brayden, and J. F. Worley, “Noradrenaline contracts arteries by activating voltage-dependent calcium channels,” Nature, vol. 336, no. 6197, pp. 382–385, 1988.
[3]
H. Bading, D. D. Ginty, and M. E. Greenberg, “Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways,” Science, vol. 260, no. 5105, pp. 181–186, 1993.
[4]
D. Johnston, S. Williams, D. Jaffe, and R. Gray, “NMDA-receptor-independent long-term potentiation,” Annual Review of Physiology, vol. 54, pp. 489–505, 1992.
[5]
C. R. Artalejo, M. E. Adams, and A. P. Fox, “Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells,” Nature, vol. 367, no. 6458, pp. 72–76, 1994.
[6]
E. Carafoli, “Intracellular calcium homeostasis.,” Annual Review of Biochemistry, vol. 56, pp. 395–433, 1987.
[7]
V. Flockerzi, H. J. Oeken, and F. Hofmann, “Purification of a functional receptor for calcium-channel blockers from rabbit skeletal-muscle microsomes,” European Journal of Biochemistry, vol. 161, no. 1, pp. 217–224, 1986.
[8]
M. Takahashi, M. J. Seagar, J. F. Jones, B. F. X. Reber, and W. A. Catterall, “Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 15, pp. 5478–5482, 1987.
[9]
A. C. Dolphin, “β Subunits of voltage-gated calcium channels,” Journal of Bioenergetics and Biomembranes, vol. 35, no. 6, pp. 599–620, 2003.
[10]
N. Klugbauer, E. Marais, and F. Hofmann, “Calcium channel α2δ subunits: differential expression, function, and drug binding,” Journal of Bioenergetics and Biomembranes, vol. 35, no. 6, pp. 639–647, 2003.
[11]
Q. Z. Lao, E. Kobrinsky, Z. Liu, and N. M. Soldatov, “Oligomerization of subunits is an essential correlate of Ca2+ channel activity,” FASEB Journal, vol. 24, no. 12, pp. 5013–5023, 2010.
[12]
H. M. Colecraft, B. Alseikhan, S. X. Takahashi et al., “Novel functional properties of Ca2+ channel β subunits revealed by their expression in adult rat heart cells,” Journal of Physiology, vol. 541, no. 2, pp. 435–452, 2002.
[13]
S. Tiwari, Y. Zhang, J. Heller, D. R. Abernethy, and N. M. Soldatov, “Artherosclerosis-related molecular alteration of the human calcium channel subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 17024–17029, 2006.
[14]
N. M. Soldatov, “Genomic structure of human L-type Ca2+ channel,” Genomics, vol. 22, no. 1, pp. 77–87, 1994.
[15]
S. Berjukow, F. D?ring, M. Froschmayr, M. Grabner, H. Glossmann, and S. Hering, “Endogenous calcium channels in human embryonic kidney (HEK293) cells,” British Journal of Pharmacology, vol. 118, no. 3, pp. 748–754, 1996.
[16]
M. Kurejová, B. Uhrík, Z. Sulová, B. Sedláková, O. Kri?anová, and L. Lacinová, “Changes in ultrastructure and endogenous ionic channels activity during culture of HEK 293 cell line,” European Journal of Pharmacology, vol. 567, no. 1-2, pp. 10–18, 2007.
[17]
A. Meir, D. C. Bell, G. J. Stephens, K. M. Page, and A. C. Dolphin, “Calcium channel β subunit promotes voltage-dependent modulation of α1B by Gβγ,” Biophysical Journal, vol. 79, no. 2, pp. 731–746, 2000.
[18]
A. Ravindran, Q. Z. Lao, J. B. Harry, P. Abrahimi, E. Kobrinsky, and N. M. Soldatov, “Calmodulin-dependent gating of calcium channels in the absence of subunits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 23, pp. 8154–8159, 2008.
[19]
E. Kobrinsky, K. J. F. Kepplinger, A. Yu et al., “Voltage-gated rearrangements associated with differential β-subunit modulation of the L-type Ca2+ channel inactivation,” Biophysical Journal, vol. 87, no. 2, pp. 844–857, 2004.
[20]
E. Kobrinsky, J.-H. Lee, and N. M. Soldatov, “Selective fluorophore-assisted light inactivation of voltage-gated calcium channels,” Channels, vol. 6, no. 3, pp. 154–156, 2012.
[21]
E. Kobrinsky, E. Schwartz, D. R. Abernethy, and N. M. Soldatov, “Voltage-gated mobility of the Ca2+ channel cytoplasmic tails and its regulatory role,” Journal of Biological Chemistry, vol. 278, no. 7, pp. 5021–5028, 2003.
[22]
S. Herzig, I. F. Y. Khan, D. Gründemann et al., “Mechanism of channel modulation by the amino terminus of cardiac β2-subunits,” FASEB Journal, vol. 21, no. 7, pp. 1527–1538, 2007.
[23]
W. Y. W. Lew, L. V. Hryshko, and D. M. Bers, “Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes,” Circulation Research, vol. 69, no. 4, pp. 1139–1145, 1991.
[24]
J. W. Hell, R. E. Westenbroek, C. Warner et al., “Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel α1 subunits,” Journal of Cell Biology, vol. 123, no. 4, pp. 949–962, 1993.
[25]
D. Lipscombe, D. V. Madison, M. Poenie, H. Reuter, R. Y. Tsien, and R. W. Tsien, “Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 7, pp. 2398–2402, 1988.
[26]
R. E. Westenbroek, M. K. Ahlijanian, and W. A. Catterall, “Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons,” Nature, vol. 347, no. 6290, pp. 281–284, 1990.
[27]
C. Franzini-Armstrong, F. Protasi, and P. Tijskens, “The assembly of calcium release units in cardiac muscle,” Annals of the New York Academy of Sciences, vol. 1047, pp. 76–85, 2005.
[28]
D. V. Gathercole, D. J. Colling, J. N. Skepper, Y. Takagishi, A. J. Levi, and N. J. Severs, “Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes—implications for excitation-contraction coupling in cardiac muscle,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 11, pp. 1981–1994, 2000.
[29]
Y. Takagishi, K. Yasui, N. J. Severs, and Y. Murata, “Species-specific difference in distribution of voltage-gated L-type Ca2+ channels of cardiac myocytes,” American Journal of Physiology, vol. 279, no. 6, pp. C1963–C1969, 2000.
[30]
G. S. Harms, L. Cognet, P. H. M. Lommerse et al., “Single-molecule imaging of L-type Ca2+ channels in live cells,” Biophysical Journal, vol. 81, no. 5, pp. 2639–2646, 2001.
[31]
E. Kobrinsky, P. Abrahimi, S. Q. Duong et al., “Effect of subunits on structural organization of calcium channels,” PLoS ONE, vol. 4, no. 5, Article ID e5587, 2009.
[32]
K. S. Lee, E. Marban, and R. W. Tsien, “Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium,” Journal of Physiology, vol. 364, pp. 395–411, 1985.
[33]
X. Zong and F. Hofmann, “Ca2+-dependent inactivation of the class C L-type Ca2+ channel is a property of the α1 subunit,” FEBS Letters, vol. 378, no. 2, pp. 121–125, 1996.
[34]
N. M. Soldatov, R. D. Zühlke, A. Bouron, and H. Reuter, “Molecular structures involved in L-type calcium channel inactivation. Role of the carboxyl-terminal region encoded by exons 40–42 in subunit in the kinetics and Ca2+ dependence of inactivation,” Journal of Biological Chemistry, vol. 272, no. 6, pp. 3560–3566, 1997.
[35]
N. M. Soldatov, M. Oz, K. A. O'Brien, D. R. Abernethy, and M. Morad, “Molecular determinants of L-type Ca2+ channel inactivation: segment exchange analysis of the carboxyl-terminal cytoplasmic motif encoded by exons 40-42 of the human subunit gene,” Journal of Biological Chemistry, vol. 273, no. 2, pp. 957–963, 1998.
[36]
R. D. Zühlke and H. Reuter, “Ca2+-sensitive inactivation of L-type Ca2+ channels depends on multiple cytoplasmic amino acid sequences of the subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3287–3294, 1998.
[37]
B. Z. Peterson, C. D. DeMaria, J. P. Adelman, and D. T. Yue, “Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels,” Neuron, vol. 22, no. 3, pp. 549–558, 1999.
[38]
N. Qin, R. Olcese, M. Bransby, T. Lin, and L. Birnbaumer, “Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 5, pp. 2435–2438, 1999.
[39]
R. D. Zühlke, G. S. Pitt, K. Deisseroth, R. W. Tsien, and H. Reuter, “Calmodulin supports both inactivation and facilitation of L-type calcium channels,” Nature, vol. 399, no. 6732, pp. 159–162, 1999.
[40]
M. G. Erickson, B. A. Alseikhan, B. Z. Peterson, and D. T. Yue, “Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells,” Neuron, vol. 31, no. 6, pp. 973–985, 2001.
[41]
P. Pate, J. Mochca-Morales, Y. Wu et al., “Determinants for calmodulin binding on voltage-dependent Ca2+ channels,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39786–39792, 2000.
[42]
C. Romanin, R. Gamsjaeger, H. Kahr et al., “Ca2+ sensors of L-type Ca2+ channel,” FEBS Letters, vol. 487, no. 2, pp. 301–306, 2000.
[43]
M. X. Mori, M. G. Erickson, and D. T. Yue, “Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels,” Science, vol. 304, no. 5669, pp. 432–435, 2004.
[44]
L. Xiong, Q. K. Kleerekoper, R. He, J. A. Putkey, and S. L. Hamilton, “Sites on calmodulin that interact with the C-terminal tail of channel,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 7070–7079, 2005.
[45]
R. Zhang, I. Dzhura, C. E. Grueter, W. Thiel, R. J. Colbran, and M. E. Anderson, “A dynamic α-β inter-subunit agonist signaling complex is a novel feedback mechanism for regulating L-type Ca2+ channel opening,” FASEB Journal, vol. 19, no. 11, pp. 1573–1575, 2005.
[46]
Q. Z. Lao, E. Kobrinsky, J. B. Harry, A. Ravindran, and N. M. Soldatov, “New determinant for the 2 subunit modulation of the calcium channel,” Journal of Biological Chemistry, vol. 283, no. 23, pp. 15577–15588, 2008.
[47]
E. Kobrinsky, S. Tiwari, V. A. Maltsev et al., “Differential role of the subunit tails in regulation of the channel by membrane potential, β subunits, and Ca2+ ions,” Journal of Biological Chemistry, vol. 280, no. 13, pp. 12474–12485, 2005.
[48]
S. Hering, S. Berjukow, S. Aczél, and E. N. Timin, “Ca2+ channel block and inactivation: common molecular determinants,” Trends in Pharmacological Sciences, vol. 19, no. 11, pp. 439–443, 1998.
[49]
N. M. Soldatov, “Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction,” Trends in Pharmacological Sciences, vol. 24, no. 4, pp. 167–171, 2003.
[50]
S. Hering, S. Berjukow, S. Sokolov et al., “Molecular determinants of inactivation in voltage-gated Ca2+ channels,” Journal of Physiology, vol. 528, no. 2, pp. 237–249, 2000.
[51]
N. M. Soldatov, S. Zhenochin, B. AlBanna, D. R. Abernethy, and M. Morad, “New molecular determinant for inactivation of the human L-type Ca2+ channel,” Journal of Membrane Biology, vol. 177, no. 2, pp. 129–135, 2000.
[52]
J. F. Zhang, P. T. Ellinor, R. W. Aldrich, and R. W. Tsien, “Molecular determinants of voltage-dependent inactivation in calcium channels,” Nature, vol. 372, no. 6501, pp. 97–100, 1994.
[53]
C. Shi and N. M. Soldatov, “Molecular determinants of voltage-dependent slow inactivation of the Ca2+ channel,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 6813–6821, 2002.
[54]
M. Morad and N. Soldatov, “Calcium channel inactivation: possible role in signal transduction and Ca2+ signaling,” Cell Calcium, vol. 38, no. 3-4, pp. 223–231, 2005.
[55]
Y. Blumenstein, N. Kanevsky, G. Sahar, R. Barzilai, T. Ivanina, and N. Dascal, “A novel long N-terminal isoform of human L-type Ca2+ channel is up-regulated by protein kinase C,” Journal of Biological Chemistry, vol. 277, no. 5, pp. 3419–3423, 2002.
[56]
E. Shistik, T. Ivanina, Y. Blumenstein, and N. Dascal, “Crucial role of N terminus in function of cardiac L-type Ca2+ channel and its modulation by protein kinase C,” Journal of Biological Chemistry, vol. 273, no. 28, pp. 17901–17909, 1998.
[57]
A. Ravindran, E. Kobrinsky, Q. Z. Lao, and N. M. Soldatov, “Functional properties of the calcium channel activated by calmodulin in the absence of α2δ subunits,” Channels, vol. 3, no. 1, pp. 25–31, 2009.
[58]
A. Benmocha, L. Almagor, S. Oz, J. A. Hirsch, and N. Dascal, “Characterization of the calmodulin-binding site in the N terminus of .,” Channels, vol. 3, no. 5, pp. 337–342, 2009.
[59]
T. Ivanina, Y. Blumenstein, E. Shistik, R. Barzilai, and N. Dascal, “Modulation of L-type Ca2+ channels by Gβγ and calmodulin via interactions with N and C termini of ,” Journal of Biological Chemistry, vol. 275, no. 51, pp. 39846–39854, 2000.
[60]
Z. Buraei and J. Yang, “The β subunit of voltage-gated Ca2+ channels,” Physiological Reviews, vol. 90, no. 4, pp. 1461–1506, 2010.
[61]
E. Miranda-Laferte, G. Gonzalez-Gutierrez, S. Schmidt et al., “Homodimerization of the Src homology 3 domain of the calcium channel β-subunit drives dynamin-dependent endocytosis,” Journal of Biological Chemistry, vol. 286, no. 25, pp. 22203–22210, 2011.
[62]
C. E. Grueter, S. A. Abiria, Y. Wu, M. E. Anderson, and R. J. Colbran, “Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel β subunits,” Biochemistry, vol. 47, no. 6, pp. 1760–1767, 2008.
[63]
O. M. Koval, X. Guan, Y. Wu et al., “ β-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 4996–5000, 2010.
[64]
P. Liao, D. Yu, S. Lu et al., “Smooth muscle-selective alternatively spliced exon generates functional variation in calcium channels,” Journal of Biological Chemistry, vol. 279, no. 48, pp. 50329–50335, 2004.
[65]
P. Liao, D. Yu, G. Li et al., “A smooth muscle calcium channel splice variant underlies hyperpolarized window current and enhanced state-dependent inhibition by nifedipine,” Journal of Biological Chemistry, vol. 282, no. 48, pp. 35133–35142, 2007.
[66]
E. Kobrinsky, S. Q. Duong, A. Sheydina, and N. M. Soldatov, “Microdomain organization and frequency-dependence of CREB-dependent transcriptional signaling in heart cells,” FASEB Journal, vol. 25, no. 5, pp. 1544–1555, 2011.