The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects. 1. Introduction The transforming growth factor-beta (TGFβ) was discovered more than two decades ago and was isolated as a secreted factor from sarcoma virus-infected cells [1–3]. TGFβ was shown to transiently confer on normal fibroblasts phenotypic properties of transformed cells, as demonstrated by their acquired ability to grow in soft agar in an anchorage-independent manner [2]. Since then, more than 40 different family members have been identified, including the activin/inhibin subfamily, the bone morphogenetic proteins (BMPs), nodal, myostatin, and the mullerian inhibitory substance (MIS) [4–7]. As for the TGFβ subfamily, three distinct isoforms have been identified (TGFβ-1, -2, -3), each encoded by a different gene [4, 8–10]. Of the three different types of TGFβ, which share around 70% homology within their sequence, TGFβ-1 has been the most studied isoform and will hereinafter be referred to as TGFβ. The active TGFβ molecule is a homodimer stabilized by hydrophobic interactions strengthened by a disulfide
References
[1]
R. N. Fabricant and C. J. Todaro, “Nerve growth factor and malignant melanomas,” New England Journal of Medicine, vol. 298, no. 7, p. 402, 1978.
[2]
J. E. De Larco and G. J. Todaro, “Growth factors from murine sarcoma virus-transformed cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 8, pp. 4001–4005, 1978.
[3]
A. B. Roberts, M. A. Anzano, C. A. Meyers et al., “Purification and properties of a type β transforming growth factor from bovine kidney,” Biochemistry, vol. 22, no. 25, pp. 5692–5698, 1983.
[4]
J. Massagué, “TGFβ in cancer,” Cell, vol. 134, no. 2, pp. 215–230, 2008.
[5]
J.-J. Lebrun, “Activin, TGF-β and menin in pituitary tumorigenesis,” Advances in Experimental Medicine and Biology, vol. 668, pp. 69–78, 2009.
[6]
L. Humbert, J. C. Neel, and J.-J. Lebrun, “Targeting TGF-beta signaling in human cancer therapy,” Trends in Cell & Molecular Biology, vol. 5, pp. 69–107, 2010.
[7]
J.-J. Lebrun, Y. Chen, and W. W. Vale, “Receptor serine kinases and signaling by activins and inhibins,” in Activin and Follistatin, Regulatory Functions in System and Cell Biology, pp. 1–20, Serono Symposia Publication, Springer, New York, NY, USA, 1997.
[8]
J. Massagué, “TGF-β signal transduction,” Annual Review of Biochemistry, vol. 67, pp. 753–791, 1998.
[9]
R. Derynck, R. J. Akhurst, and A. Balmain, “TGF-β signaling in tumor suppression and cancer progression,” Nature Genetics, vol. 29, no. 2, pp. 117–129, 2001.
[10]
D. Chin, G. M. Boyle, P. G. Parsons, and W. B. Coman, “What is transforming growth factor-beta (TGF-β)?” British Journal of Plastic Surgery, vol. 57, no. 3, pp. 215–221, 2004.
[11]
P. D. Sun and D. R. Davies, “The cystine-knot growth-factor superfamily,” Annual Review of Biophysics and Biomolecular Structure, vol. 24, pp. 269–291, 1995.
[12]
K. Miyazono, H. Ichijo, and C. H. Heldin, “Transforming growth factor-β: latent forms, binding proteins and receptors,” Growth Factors, vol. 8, no. 1, pp. 11–22, 1993.
[13]
K. Koli, J. Saharinen, M. Hyyti?inen, C. Penttinen, and J. Keski-Oja, “Latency, activation, and binding proteins of TGF-β,” Microscopy Research and Technique, vol. 52, no. 4, pp. 354–362, 2001.
[14]
N. Khalil, “TGF-β: from latent to active,” Microbes and Infection, vol. 1, no. 15, pp. 1255–1263, 1999.
[15]
J. Massague, M. P. Czech, K. Iwata, J. E. DeLarco, and G. J. Todaro, “Affinity labeling of a transforming growth factor receptor that does not interact with epidermal growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 22 I, pp. 6822–6826, 1982.
[16]
J. Massague and B. Like, “Cellular receptors for type β transforming growth factor. Ligand binding and affinity labeling in human and rodent cell lines,” Journal of Biological Chemistry, vol. 260, no. 5, pp. 2636–2645, 1985.
[17]
J. Massague, “The transforming growth factor-β family,” Annual Review of Cell Biology, vol. 6, pp. 597–641, 1990.
[18]
Y. Shi and J. Massagué, “Mechanisms of TGF-β signaling from cell membrane to the nucleus,” Cell, vol. 113, no. 6, pp. 685–700, 2003.
[19]
J. Massagué, S. W. Blain, and R. S. Lo, “TGFβ signaling in growth control, cancer, and heritable disorders,” Cell, vol. 103, no. 2, pp. 295–309, 2000.
[20]
L. M. Wakefield and A. B. Roberts, “TGF-β signaling: positive and negative effects on tumorigenesis,” Current Opinion in Genetics and Development, vol. 12, no. 1, pp. 22–29, 2002.
[21]
J. Xu, S. Lamouille, and R. Derynck, “TGF-β-induced epithelial to mesenchymal transition,” Cell Research, vol. 19, no. 2, pp. 156–172, 2009.
[22]
J. P. Their, “Epithelial-mesenchymal transitions in tumor progression,” Nature Reviews Cancer, vol. 2, no. 6, pp. 442–454, 2002.
[23]
J. M. Yingling, K. L. Blanchard, and J. S. Sawyer, “Development of TGF-β signalling inhibitors for cancer therapy,” Nature Reviews Drug Discovery, vol. 3, no. 12, pp. 1011–1022, 2004.
[24]
P. M. Siegel and J. Massagué, “Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer,” Nature Reviews Cancer, vol. 3, no. 11, pp. 807–821, 2003.
[25]
N. Dumont and C. L. Arteaga, “Targeting the TGFβ signaling network in human neoplasia,” Cancer Cell, vol. 3, no. 6, pp. 531–536, 2003.
[26]
S. M. Gorsch, V. A. Memoli, T. A. Stukel, L. I. Gold, and B. A. Arrick, “Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer,” Cancer Research, vol. 52, no. 24, pp. 6949–6952, 1992.
[27]
J.-J. Lebrun and W. W. Vale, “Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation,” Molecular and Cellular Biology, vol. 17, no. 3, pp. 1682–1691, 1997.
[28]
J. Massagué and Y. G. Chen, “Controlling TGF-β signaling,” Genes and Development, vol. 14, no. 6, pp. 627–644, 2000.
[29]
A. Mehra and J. L. Wrana, “TGF-β and the Smad signal transduction pathway,” Biochemistry and Cell Biology, vol. 80, no. 5, pp. 605–622, 2002.
[30]
A. Moustakas and C. H. Heldin, “Non-Smad TGF-β signals,” Journal of Cell Science, vol. 118, no. 16, pp. 3573–3584, 2005.
[31]
L. Jayaraman and J. Massagué, “Distinct oligomeric states of SMAD proteins in the transforming growth factor-β pathway,” Journal of Biological Chemistry, vol. 275, no. 52, pp. 40710–40717, 2000.
[32]
B. M. Chacko, B. Qin, J. J. Correia, S. S. Lam, M. P. De Caestecker, and K. Lin, “The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization,” Nature Structural Biology, vol. 8, no. 3, pp. 248–253, 2001.
[33]
B. M. Chacko, B. Y. Qin, A. Tiwari et al., “Structural basis of heteromeric Smad protein assembly in TGF-β signaling,” Molecular Cell, vol. 15, no. 5, pp. 813–823, 2004.
[34]
J.-J. Lebrun, K. Takabe, Y. Chen, and W. Vale, “Roles of pathway-specific and inhibitory Smads in activin receptor signaling,” Molecular Endocrinology, vol. 13, no. 1, pp. 15–23, 1999.
[35]
L. Xu, Y. G. Chen, and J. Massagué, “The nuclear import function of Smad2 is masked by SARA and unmasked by TGFβ-dependent phosphorylation,” Nature Cell Biology, vol. 2, no. 8, pp. 559–562, 2000.
[36]
T. Reguly and J. L. Wrana, “In or out? The dynamics of Smad nucleocytoplasmic shuttling,” Trends in Cell Biology, vol. 13, no. 5, pp. 216–220, 2003.
[37]
L. Xu and J. Massagué, “Nucleocytoplasmic shuttling of signal transducers,” Nature Reviews Molecular Cell Biology, vol. 5, no. 3, pp. 209–219, 2004.
[38]
Y. Shi, Y. F. Wang, L. Jayaraman, H. Yang, J. Massagué, and N. P. Pavletich, “Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling,” Cell, vol. 94, no. 5, pp. 585–594, 1998.
[39]
J. Massagué and D. Wotton, “Transcriptional control by the TGF-β/Smad signaling system,” EMBO Journal, vol. 19, no. 8, pp. 1745–1754, 2000.
[40]
X. Chen, E. Weisberg, V. Fridmacher, M. Watanabe, G. Naco, and M. Whitman, “Smad4 and FAST-1 in the assembly of activin-responsive factor,” Nature, vol. 389, no. 6646, pp. 85–89, 1997.
[41]
A. Hata, J. Seoane, G. Lagna, E. Montalvo, A. Hemmati-Brivanlou, and J. Massagué, “OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP- Smad and Olf signaling pathways,” Cell, vol. 100, no. 2, pp. 229–240, 2000.
[42]
X. H. Feng and R. Derynck, “Specificity and versatility in TGF-β signaling through smads,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 659–693, 2005.
[43]
J. Massagué, J. Seoane, and D. Wotton, “Smad transcription factors,” Genes and Development, vol. 19, no. 23, pp. 2783–2810, 2005.
[44]
A. V. Bakin, C. Rinehart, A. K. Tomlinson, and C. L. Arteaga, “p38 mitogen-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration,” Journal of Cell Science, vol. 115, no. 15, pp. 3193–3206, 2002.
[45]
Z. Yan, S. Winawer, and E. Friedman, “Two different signal transduction pathways can be activated by transforming growth factor β1 in epithelial cells,” Journal of Biological Chemistry, vol. 269, no. 18, pp. 13231–13237, 1994.
[46]
H. Hanafusa, J. Ninomiya-Tsuji, N. Masuyama et al., “Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression,” Journal of Biological Chemistry, vol. 274, no. 38, pp. 27161–27167, 1999.
[47]
E. Cocolakis, S. Lemay, S. Ali, and J.-J. Lebrun, “The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin,” Journal of Biological Chemistry, vol. 276, no. 21, pp. 18430–18436, 2001.
[48]
A. Lacerte, J. Korah, M. Roy, X. J. Yang, S. Lemay, and J.-J. Lebrun, “Transforming growth factor-β inhibits telomerase through SMAD3 and E2F transcription factors,” Cellular Signalling, vol. 20, no. 1, pp. 50–59, 2008.
[49]
C. De Guise, A. Lacerte, S. Rafiei et al., “Activin inhibits the human Pit-1 gene promoter through the p38 kinase pathway in a smad-independent manner,” Endocrinology, vol. 147, no. 9, pp. 4351–4362, 2006.
[50]
M. Davies, M. Robinson, E. Smith, S. Huntley, S. Prime, and I. Paterson, “Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-β1 involves MAPK, Smad and AP-1 signalling pathways,” Journal of Cellular Biochemistry, vol. 95, no. 5, pp. 918–931, 2005.
[51]
M. K. Lee, C. Pardoux, M. C. Hall et al., “TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA,” EMBO Journal, vol. 26, no. 17, pp. 3957–3967, 2007.
[52]
S. Edlund, M. Landstr?m, C. H. Heldin, and P. Aspenstr?m, “Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA,” Molecular Biology of the Cell, vol. 13, no. 3, pp. 902–914, 2002.
[53]
N. A. Bhowmick, M. Ghiassi, A. Bakin et al., “Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism,” Molecular Biology of the Cell, vol. 12, no. 1, pp. 27–36, 2001.
[54]
R. H. Chen, Y. H. Su, R. L. C. Chuang, and T. Y. Chang, “Suppression of transforming growth factor-β-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway,” Oncogene, vol. 17, no. 15, pp. 1959–1968, 1998.
[55]
P. Péron, M. Rahmani, Y. Zagar, A. M. Durand-Schneider, B. Lardeux, and D. Bernuau, “Potentiation of Smad transactivation by Jun proteins during a combined treatment with epidermal growth factor and transforming growth factor-β in rat hepatocytes: role of phosphatidylinositol 3-kinase-induced AP-1 activation,” Journal of Biological Chemistry, vol. 276, no. 13, pp. 10524–10531, 2001.
[56]
S. Lamouille and R. Derynck, “Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway,” Journal of Cell Biology, vol. 178, no. 3, pp. 437–451, 2007.
[57]
H. Hayashi, S. Abdollah, Y. Qiu et al., “The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling,” Cell, vol. 89, no. 7, pp. 1165–1173, 1997.
[58]
A. Nakao, M. Afrakhte, A. Morén et al., “Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling,” Nature, vol. 389, no. 6651, pp. 631–635, 1997.
[59]
W. Shi, C. Sun, B. He et al., “GADD34-PP1c recruited by Smad7 dephosphorylates TGFβ type I receptor,” Journal of Cell Biology, vol. 164, no. 2, pp. 291–300, 2004.
[60]
P. Kavsak, R. K. Rasmussen, C. G. Causing et al., “Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation,” Molecular Cell, vol. 6, no. 6, pp. 1365–1375, 2000.
[61]
C. Suzuki, G. Murakami, M. Fukuchi et al., “Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39919–39925, 2002.
[62]
Y. Tajima, K. Goto, M. Yoshida et al., “Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7,” Journal of Biological Chemistry, vol. 278, no. 12, pp. 10716–10721, 2003.
[63]
G. M. Di Guglielmo, C. Le Roy, A. F. Goodfellow, and J. L. Wrana, “Distinct endocytic pathways regulate TGF-β receptor signalling and turnover,” Nature Cell Biology, vol. 5, no. 5, pp. 410–421, 2003.
[64]
W. Chen, K. C. Kirkbride, T. How et al., “β-arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling,” Science, vol. 301, no. 5638, pp. 1394–1397, 2003.
[65]
D. Yao, M. Ehrlich, Y. I. Henis, and E. B. Leof, “Transforming growth factor-β receptors interact with AP2 by direct binding to β2 subunit,” Molecular Biology of the Cell, vol. 13, no. 11, pp. 4001–4012, 2002.
[66]
R. S. Lo and J. Massague, “Ubiquitin-dependent degradation of TGF-beta-activated smad2,” Nature Cell Biology, vol. 1, pp. 472–478, 1999.
[67]
X. Lin, X. Duan, Y. Y. Liang et al., “PPM1A functions as a smad phosphatase to terminate TGFβ signaling,” Cell, vol. 125, no. 5, pp. 915–928, 2006.
[68]
L. Xu, Y. Kang, S. ??l, and J. Massagué, “Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus,” Molecular Cell, vol. 10, no. 2, pp. 271–282, 2002.
[69]
G. J. Inman, F. J. Nicolás, and C. S. Hill, “Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity,” Molecular Cell, vol. 10, no. 2, pp. 283–294, 2002.
[70]
M. Kretzschmar, J. Doody, and J. Massagué, “Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1,” Nature, vol. 389, no. 6651, pp. 618–622, 1997.
[71]
M. Kretzschmar, J. Doody, I. Timokhina, and J. Massagué, “A mechanism of repression of TGFfβ/Smad signaling by oncogenic Ras,” Genes and Development, vol. 13, no. 7, pp. 804–816, 1999.
[72]
H. Nagata, E. Hatano, M. Tada et al., “Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor-suppression in rat hepatocellular carcinoma,” Hepatology, vol. 49, no. 6, pp. 1944–1953, 2009.
[73]
M. Kretzschmar, F. Liu, A. Hata, J. Doody, and J. Massagué, “The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase,” Genes and Development, vol. 11, no. 8, pp. 984–995, 1997.
[74]
S. J. Wicks, L. Stephen, N. Abdel-Wahab, R. M. Mason, and A. Chantry, “Inactivation of Smad-transforming growth factor β signaling by Ca2+-calmodulin-dependent protein kinase II,” Molecular and Cellular Biology, vol. 20, no. 21, pp. 8103–8111, 2000.
[75]
I. Matsuura, N. G. Denissova, G. Wang, D. He, J. Long, and F. Liu, “Cyclin-dependent kinases regulate the antiproliferative function of Smads,” Nature, vol. 430, no. 6996, pp. 226–231, 2004.
[76]
D. S. Waddell, N. T. Liberati, X. Guo, J. P. Frederick, and Y. F. Wang, “Casein kinase Iε plays a functional role in the transforming growth factor-β signaling pathway,” Journal of Biological Chemistry, vol. 279, no. 28, pp. 29236–29246, 2004.
[77]
I. Yakymovych, U. Engstr?m, S. Grimsby, C. H. Heldin, and S. Souchelnytskyi, “Inhibition of transforming growth factor-β signaling by low molecular weight compounds interfering with ATP- or substrate-binding sites of the TGFβ type I receptor kinase,” Biochemistry, vol. 41, no. 36, pp. 11000–11007, 2002.
[78]
J. Ho, E. Cocolakis, V. M. Dumas, B. I. Posner, S. A. Laporte, and J.-J. Lebrun, “The G protein-coupled receptor kinase-2 is a TGFβ-inducible antagonist of TGFβ signal transduction,” EMBO Journal, vol. 24, no. 18, pp. 3247–3258, 2005.
[79]
J. Guo, H. Chen, J. Ho et al., “TGFβ-induced GRK2 expression attenuates AngII-regulated vascular smooth muscle cell proliferation and migration,” Cellular Signalling, vol. 21, no. 6, pp. 899–905, 2009.
[80]
J. Ho, H. Chen, and J.-J. Lebrun, “Novel dominant negative Smad antagonists to TGFβ signaling,” Cellular Signalling, vol. 19, no. 7, pp. 1565–1574, 2007.
[81]
L. Sun, G. Wu, J. K. V. Willson et al., “Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells,” Journal of Biological Chemistry, vol. 269, no. 42, pp. 26449–26455, 1994.
[82]
J. Wang, L. Sun, L. Myeroff et al., “Demonstration that mutation of the type II transforming growth factor β receptor inactivates its tumor suppressor activity in replication error- positive colon carcinoma cells,” Journal of Biological Chemistry, vol. 270, no. 37, pp. 22044–22049, 1995.
[83]
C. Go, P. Li, and X. J. Wang, “Blocking transforming growth factor β signaling in transgenic epidermis accelerates chemical carcinogenesis: a mechanism associated with increased angiogenesis,” Cancer Research, vol. 59, no. 12, pp. 2861–2868, 1999.
[84]
E. P. B?ttinger, J. L. Jakubczak, D. C. Haines, K. Bagnall, and L. M. Wakefield, “Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]- anthracene,” Cancer Research, vol. 57, no. 24, pp. 5564–5570, 1997.
[85]
S. J. Kim, Y. H. Im, S. D. Markowitz, and Y. J. Bang, “Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis,” Cytokine and Growth Factor Reviews, vol. 11, no. 1-2, pp. 159–168, 2000.
[86]
H. L. Moses, E. Y. Yang, and J. A. Pietenpol, “TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights,” Cell, vol. 63, no. 2, pp. 245–247, 1990.
[87]
J. M. Li, M. A. Nichols, S. Chandrasekharan, Y. Xiong, and X. F. Wang, “Transforming growth factor β activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 26750–26753, 1995.
[88]
M. B. Datto, Y. Li, J. F. Panus, D. J. Howe, Y. Xiong, and X. F. Wang, “Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 12, pp. 5545–5549, 1995.
[89]
J. Seoane, H. V. Le, L. Shen, S. A. Anderson, and J. Massagué, “Integration of smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation,” Cell, vol. 117, no. 2, pp. 211–223, 2004.
[90]
K. Pardali, A. Kurisaki, A. Morén, P. Ten Dijke, D. Kardassis, and A. Moustakas, “Role of Smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-β,” Journal of Biological Chemistry, vol. 275, no. 38, pp. 29244–29256, 2000.
[91]
J. Ho, C. De Guise, C. Kim, S. Lemay, X. F. Wang, and J.-J. Lebrun, “Activin induces hepatocyte cell growth arrest through induction of the cyclin-dependent kinase inhibitor p15INK4B and Sp1,” Cellular Signalling, vol. 16, no. 6, pp. 693–701, 2004.
[92]
I. Reynisdottir, K. Polyak, A. Iavarone, and J. Massague, “Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β,” Genes and Development, vol. 9, no. 15, pp. 1831–1845, 1995.
[93]
C. Sandhu, J. Garbe, N. Bhattacharya et al., “Transforming growth factor β stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells,” Molecular and Cellular Biology, vol. 17, no. 5, pp. 2458–2467, 1997.
[94]
R. J. Coffey, C. C. Bascom, N. J. Sipes, R. Graves-Deal, B. E. Weissman, and H. L. Moses, “Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor β,” Molecular and Cellular Biology, vol. 8, no. 8, pp. 3088–3093, 1988.
[95]
Y. Kang, C. R. Chen, and J. Massagué, “A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells,” Molecular Cell, vol. 11, no. 4, pp. 915–926, 2003.
[96]
A. Lasorella, M. Noseda, M. Beyna, and A. Iavarone, “Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins,” Nature, vol. 407, no. 6804, pp. 592–598, 2000.
[97]
M. Kowanetz, U. Valcourt, R. Bergstr?m, C. H. Heldin, and A. Moustakas, “Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein,” Molecular and Cellular Biology, vol. 24, no. 10, pp. 4241–4254, 2004.
[98]
J. D. Norton, “ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis,” Journal of Cell Science, vol. 113, part 22, pp. 3897–3905, 2000.
[99]
C. R. Chen, Y. Kang, P. M. Siegel, and J. Massagué, “E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression,” Cell, vol. 110, no. 1, pp. 19–32, 2002.
[100]
J. Seoane, C. Pouponnot, P. Staller, M. Schader, M. Eilers, and J. Massagué, “TGFβ influences myc, miz-1 and smad to control the CDK inhibitor p15INK4b,” Nature Cell Biology, vol. 3, no. 4, pp. 400–408, 2001.
[101]
P. Staller, K. Peukert, A. Kiermaier et al., “Repression of p15INK4b expression by Myc through association with Miz-1,” Nature Cell Biology, vol. 3, no. 4, pp. 392–399, 2001.
[102]
C.-I. J. Ma, C. Martin, Z. Ma et al., “Engulfment protein GULP is regulator of transforming growth factor-β response in ovarian cells,” Journal of Biological Chemistry, vol. 287, no. 24, pp. 20636–20651, 2012.
[103]
A. Iavarone and J. Massagué, “Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15,” Nature, vol. 387, no. 6631, pp. 417–422, 1997.
[104]
H. Kaji, L. Canaff, J.-J. Lebrun, D. Goltzman, and G. N. Hendy, “Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3837–3842, 2001.
[105]
C. N. Hendy, H. Kaji, H. Sowa, J.-J. Lebrun, and L. Canaff, “Menin and TGF-β superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast,” Hormone and Metabolic Research, vol. 37, no. 6, pp. 375–379, 2005.
[106]
N. Ben-Jonathan and R. Hnasko, “Dopamine as a prolactin (PRL) inhibitor,” Endocrine Reviews, vol. 22, no. 6, pp. 724–763, 2001.
[107]
A. P. Heaney and S. Melmed, “Molecular targets in pituitary tumours,” Nature Reviews Cancer, vol. 4, no. 4, pp. 285–295, 2004.
[108]
S. L. Asa and S. Ezzat, “The cytogenesis and pathogenesis of pituitary adenomas,” Endocrine Reviews, vol. 19, no. 6, pp. 798–827, 1998.
[109]
S. S. Guo and M. P. Sawicki, “Molecular and genetic mechanisms of tumorigenesis in multiple endocrine neoplasia type-1,” Molecular Endocrinology, vol. 15, no. 10, pp. 1653–1664, 2001.
[110]
A. Lacerte, E. H. Lee, R. Reynaud et al., “Activin inhibits pituitary prolactin expression and cell growth through Smads, Pit-1 and menin,” Molecular Endocrinology, vol. 18, no. 6, pp. 1558–1569, 2004.
[111]
F. A. Oberhammer, M. Pavelka, S. Sharma et al., “Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5408–5412, 1992.
[112]
N. Chaouchi, L. Arvanitakis, M. T. Auffredou, D. A. Blanchard, A. Vazquez, and S. Sharma, “Characterization of transforming growth factor-β1 induced apoptosis in normal human B cells and lymphoma B cell lines,” Oncogene, vol. 11, no. 8, pp. 1615–1622, 1995.
[113]
H. Valderrama-Carvajal, E. Cocolakis, A. Lacerte et al., “Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP,” Nature Cell Biology, vol. 4, no. 12, pp. 963–969, 2002.
[114]
K. Yanagisawa, H. Osada, A. Masuda et al., “Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells,” Oncogene, vol. 17, no. 13, pp. 1743–1747, 1998.
[115]
R. J. Rotello, R. C. Lieberman, A. F. Purchio, and L. E. Gerschenson, “Coordinated regulation of apoptosis and cell proliferation by transforming growth factor β1 in cultured uterine epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 8, pp. 3412–3415, 1991.
[116]
N. Schuster and K. Krieglstein, “Mechanisms of TGF-β-mediated apoptosis,” Cell and Tissue Research, vol. 307, no. 1, pp. 1–14, 2002.
[117]
R. Perlman, W. P. Schiemann, M. W. Brooks, H. F. Lodish, and R. A. Weinberg, “TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation,” Nature Cell Biology, vol. 3, no. 8, pp. 708–714, 2001.
[118]
C. W. Jang, C. H. Chen, C. C. Chen, J. Y. Chen, Y. H. Su, and R. H. Chen, “TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase,” Nature Cell Biology, vol. 4, no. 1, pp. 51–58, 2002.
[119]
I. Tachibana, M. Imoto, P. N. Adjei et al., “Overexpression of the TGFβ-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells,” Journal of Clinical Investigation, vol. 99, no. 10, pp. 2365–2374, 1997.
[120]
S. Larisch, Y. Yi, R. Lotan et al., “A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif,” Nature Cell Biology, vol. 2, no. 12, pp. 915–921, 2000.
[121]
A. Atfi, M. Buisine, A. Mazars, and C. Gespach, “Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-β through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway,” Journal of Biological Chemistry, vol. 272, no. 40, pp. 24731–24734, 1997.
[122]
Y. Yamamura, X. Hua, S. Bergelson, and H. F. Lodish, “Critical role of Smads and AP-1 complex in transforming growth factor-β-dependent apoptosis,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 36295–36302, 2000.
[123]
M. Ohgushi, S. Kuroki, H. Fukamachi et al., “Transforming growth factor β-dependent sequential activation of Smad, Bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells,” Molecular and Cellular Biology, vol. 25, no. 22, pp. 10017–10028, 2005.
[124]
G. M. Wildey, S. Patil, and P. H. Howe, “Smad3 potentiates transforming growth factor β (TGFβ)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 18069–18077, 2003.
[125]
A. Saltzman, R. Munro, G. Searfoss, C. Franks, M. Jaye, and Y. Ivashchenko, “Transforming growth factor-β-mediated apoptosis in the Ramos B-lymphoma cell line is accompanied by caspase activation and Bcl-X(L) downregulation,” Experimental Cell Research, vol. 242, no. 1, pp. 244–254, 1998.
[126]
J. M. Francis, C. M. Heyworth, E. Spooncer, A. Pierce, T. M. Dexter, and A. D. Whetton, “Transforming growth factor-β1 induces apoptosis independently of p53 and selectively reduces expression of Bcl-2 in multipotent hematopoietic cells,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39137–39145, 2000.
[127]
J. E. Chipuk, M. Bhat, A. Y. Hsing, J. Ma, and D. Danielpour, “Bcl-xL Blocks transforming growth factor-β1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells,” Journal of Biological Chemistry, vol. 276, no. 28, pp. 26614–26621, 2001.
[128]
C. Kanamaru, H. Yasuda, and T. Fujita, “Involvement of Smad proteins in TGF-β and activin A-induced apoptosis and growth inhibition of liver cells,” Hepatology Research, vol. 23, no. 3, pp. 211–219, 2003.
[129]
J. Wang, L. Yang, J. Yang et al., “Transforming growth factor β induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells,” Cancer Research, vol. 68, no. 9, pp. 3152–3160, 2008.
[130]
A. R. Conery, Y. Cao, E. A. Thompson, C. M. Townsend, T. C. Ko, and K. Luo, “Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β-induced apoptosis,” Nature Cell Biology, vol. 6, no. 4, pp. 366–372, 2004.
[131]
I. Remy, A. Montmarquette, and S. W. Michnick, “PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3,” Nature Cell Biology, vol. 6, no. 4, pp. 358–365, 2004.
[132]
J. Yang, K. Song, T. L. Krebs, M. W. Jackson, and D. Danielpour, “Rb/E2F4 and Smad2/3 link survivin to TGF-β-induced apoptosis and tumor progression,” Oncogene, vol. 27, no. 40, pp. 5326–5338, 2008.
[133]
J. Korah, N. Falah, A. Lacerte, and J.-J. Lebrun, “A transcriptionally active pRb-E2F1-P/CAF signaling pathway is central to TGFβ-mediated apoptosis,” Cell Death and Disease Cell Death and Disease, vol. 3, article e407, 2012.
[134]
J. W. Shay and W. E. Wright, “Hayflick, his limit, and cellular ageing,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1, pp. 72–76, 2000.
[135]
S. Rama, Y. Suresh, and A. J. Rao, “Regulation of telomerase during human placental differentiation: a role for TGFβ1,” Molecular and Cellular Endocrinology, vol. 182, no. 2, pp. 233–248, 2001.
[136]
H. Yang, S. Kyo, M. Takatura, and L. Sun, “Autocrine transforming growth factor β suppresses telomerase activity and transcription of human telomerase reverse transcriptase in human cancer cells,” Cell Growth and Differentiation, vol. 12, no. 2, pp. 119–127, 2001.
[137]
G. C. Blobe, W. P. Schiemann, and H. F. Lodish, “Role of transforming growth factor β in human disease,” New England Journal of Medicine, vol. 342, no. 18, pp. 1350–1358, 2000.
[138]
L. Levy and C. S. Hill, “Alterations in components of the TGF-β superfamily signaling pathways in human cancer,” Cytokine and Growth Factor Reviews, vol. 17, no. 1-2, pp. 41–58, 2006.
[139]
A. Hata Phd, J. Massagué Phd, and Y. Shi Phd, “TGF-β signaling and cancer: structural and functional consequences of mutations in Smads,” Molecular Medicine Today, vol. 4, no. 6, pp. 257–262, 1998.
[140]
T. T. Maliekal, M. L. Antony, A. Nair, R. Paulmurugan, and D. Karunagaran, “Loss of expression, and mutations of Smad 2 and Smad 4 in human cervical cancer,” Oncogene, vol. 22, no. 31, pp. 4889–4897, 2003.
[141]
S. A. Hahn, M. Schutte, A. T. M. Shamsul Hoque et al., “DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1,” Science, vol. 271, no. 5247, pp. 350–353, 1996.
[142]
T. Sj?blom, S. Jones, L. D. Wood et al., “The consensus coding sequences of human breast and colorectal cancers,” Science, vol. 314, no. 5797, pp. 268–274, 2006.
[143]
L. A. Wolfraim, T. M. Fernandez, M. Mamura et al., “Loss of Smad3 in acute T-cell lymphoblastic leukemia,” New England Journal of Medicine, vol. 351, no. 6, pp. 552–559, 2004.
[144]
Q. Zhu, A. R. Krakowski, E. E. Dunham et al., “Dual role of SnoN in mammalian tumorigenesis,” Molecular and Cellular Biology, vol. 27, no. 1, pp. 324–339, 2007.
[145]
J. Kleeff, T. Ishiwata, H. Maruyama et al., “The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer,” Oncogene, vol. 18, no. 39, pp. 5363–5372, 1999.
[146]
S. C. Dowdy, A. Mariani, M. M. Reinholz et al., “Overexpression of the TGF-β antagonist Smad7 in endometrial cancer,” Gynecologic Oncology, vol. 96, no. 2, pp. 368–373, 2005.
[147]
J. M. Cerutti, K. N. Ebina, S. E. Matsuo, L. Martins, R. M. B. Maciel, and E. T. Kimura, “Expression of Smad4 and Smad7 in human thyroid follicular carcinoma cell lines,” Journal of Endocrinological Investigation, vol. 26, no. 6, pp. 516–521, 2003.
[148]
A. Bruna, R. S. Darken, F. Rojo et al., “High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene,” Cancer Cell, vol. 11, no. 2, pp. 147–160, 2007.
[149]
A. Hannigan, P. Smith, G. Kalna et al., “Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter,” Journal of Clinical Investigation, vol. 120, no. 8, pp. 2842–2857, 2010.
[150]
D. S. Micalizzi, K. L. Christensen, P. Jedlicka et al., “The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-β signaling,” Journal of Clinical Investigation, vol. 119, no. 9, pp. 2678–2690, 2009.
[151]
R. J. Akhurst and R. Derynck, “TGF-β signaling in cancer—a double-edged sword,” Trends in Cell Biology, vol. 11, no. 11, pp. S44–S51, 2001.
[152]
C. C. Compton, D. R. Byrd, J. Garcia-Aguilar, S. Kurtzman, A. Olawaiye, and M. K. Washington, Eds., AJCC Staging Manual, Springer, 7th edition, 2009.
[153]
C. Arslan, K. Altundag, and O. Dizdar, “Emerging drugs in metastatic breast cancer: an update,” Expert Opinion on Emerging Drugs, vol. 16, no. 4, pp. 647–667, 2011.
[154]
F. Tian, S. DaCosta Byfield, W. T. Parks et al., “Smad-binding defective mutant of transforming growth factor β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines,” Cancer Research, vol. 64, no. 13, pp. 4523–4530, 2004.
[155]
F. Tian, S. D. Byfield, W. T. Parks et al., “Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines,” Cancer Research, vol. 63, no. 23, pp. 8284–8292, 2003.
[156]
H. Azuma, S. Ehata, H. Miyazaki et al., “Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells,” Journal of the National Cancer Institute, vol. 97, no. 23, pp. 1734–1746, 2005.
[157]
M. Deckers, M. Van Dinther, J. Buijs et al., “The tumor suppressor Smad4 is required for transforming growth factor β-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells,” Cancer Research, vol. 66, no. 4, pp. 2202–2209, 2006.
[158]
Y. Kang, W. He, S. Tulley et al., “Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13909–13914, 2005.
[159]
R. Derynck, D. V. Goeddel, and A. Ullrich, “Synthesis of messenger RNAs for transforming growth factors α and β and the epidermal growth factor receptor by human tumors,” Cancer Research, vol. 47, no. 3, pp. 707–712, 1987.
[160]
R. B. Dickson, A. Kasid, and K. K. Huff, “Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-Ha-ras oncogene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 3, pp. 837–841, 1987.
[161]
B. I. Dalal, P. A. Keown, and A. H. Greenberg, “Immunocytochemical localization of secreted transforming growth factor- β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma,” American Journal of Pathology, vol. 143, no. 2, pp. 381–389, 1993.
[162]
R. A. Walker, S. J. Dearing, and B. Gallacher, “Relationship of transforming growth factor β1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma,” British Journal of Cancer, vol. 69, no. 6, pp. 1160–1165, 1994.
[163]
D. A. Thomas and J. Massagué, “TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance,” Cancer Cell, vol. 8, no. 5, pp. 369–380, 2005.
[164]
J. H. Kehrl, L. M. Wakefield, and A. B. Roberts, “Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth,” Journal of Experimental Medicine, vol. 163, no. 5, pp. 1037–1050, 1986.
[165]
F. Geissmann, P. Revy, A. Regnault et al., “TGF-β1 prevents the noncognate maturation of human dendritic Langerhans cells,” Journal of Immunology, vol. 162, no. 8, pp. 4567–4575, 1999.
[166]
J. J. Letterio and A. B. Roberts, “Regulation of immune responses by TGF-β,” Annual Review of Immunology, vol. 16, pp. 137–161, 1998.
[167]
C. W. Czarniecki, H. H. Chiu, G. H. W. Wong, S. M. McCabe, and M. A. Palladino, “Transforming growth factor-β1 modulates the expression of class II histocompatibility antigens on human cells,” Journal of Immunology, vol. 140, no. 12, pp. 4217–4223, 1988.
[168]
A. G. Geiser, J. J. Letterio, A. B. Kulkarni, S. Karlsson, A. B. Roberts, and M. B. Sporn, “Transforming growth factor β1 (TGF-β1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-β1 null mouse phenotype,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 21, pp. 9944–9948, 1993.
[169]
Y. Dong, L. Tang, J. J. Letterio, and E. N. Benveniste, “The Smad3 protein is involved in TGF-β inhibition of class II transactivator and class II MHC expression,” Journal of Immunology, vol. 167, no. 1, pp. 311–319, 2001.
[170]
L. Gorelink and R. A. Flavell, “Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells,” Nature Medicine, vol. 7, no. 10, pp. 1118–1122, 2001.
[171]
A. B. Roberts, M. B. Sporn, and R. K. Assoian, “Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 12, pp. 4167–4171, 1986.
[172]
C. Sunderkotter, M. Goebeler, K. Schulze-Osthoff, R. Bhardwaj, and C. Sorg, “Macrophage-derived angiogenesis factors,” Pharmacology and Therapeutics, vol. 51, no. 2, pp. 195–216, 1991.
[173]
M. S. Pepper, J. D. Vassalli, L. Orci, and R. Montesano, “Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis,” Experimental Cell Research, vol. 204, no. 2, pp. 356–363, 1993.
[174]
M. J. Goumans, G. Valdimarsdottir, S. Itoh et al., “Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling,” Molecular Cell, vol. 12, no. 4, pp. 817–828, 2003.
[175]
M. J. Goumans, G. Valdimarsdottir, S. Itoh, A. Rosendahl, P. Sideras, and P. Ten Dijke, “Balancing the activation state of the endothelium via two distinct TGF-β type I receptors,” EMBO Journal, vol. 21, no. 7, pp. 1743–1753, 2002.
[176]
X. Wu, J. Ma, J. D. Han, N. Wang, and Y. G. Chen, “Distinct regulation of gene expression in human endothelial cells by TGF-β and its receptors,” Microvascular Research, vol. 71, no. 1, pp. 12–19, 2006.
[177]
T. Ota, M. Fujii, T. Sugizaki et al., “Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-β in human umbilical vein endothelial cells,” Journal of Cellular Physiology, vol. 193, no. 3, pp. 299–318, 2002.
[178]
M. C. Dickson, J. S. Martin, F. M. Cousins, A. B. Kulkarni, S. Karlsson, and R. J. Akhurst, “Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice,” Development, vol. 121, no. 6, pp. 1845–1854, 1995.
[179]
J. Larsson, M. J. Goumans, L. J. Sj?strand et al., “Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice,” EMBO Journal, vol. 20, no. 7, pp. 1663–1673, 2001.
[180]
M. J. Goumans, A. Zwijsen, M. A. Van Rooijen, D. Huylebroeck, B. A. J. Roelen, and C. L. Mummery, “Transforming growth factor-β signalling in extraembryonic mesoderm is required for yolk sac vasculogenesis in mice,” Development, vol. 126, no. 16, pp. 3473–3483, 1999.
[181]
M. Oshima, H. Oshima, and M. M. Taketo, “TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis,” Developmental Biology, vol. 179, no. 1, pp. 297–302, 1996.
[182]
C. B. Brown, A. S. Boyer, R. B. Runyan, and J. V. Barnett, “Requirement of type III TGF-β receptor for endocardial cell transformation in the heart,” Science, vol. 283, no. 5410, pp. 2080–2082, 1999.
[183]
L. A. Compton, D. A. Potash, C. B. Brown, and J. V. Barnett, “Coronary vessel development is dependent on the type III transforming growth factor β receptor,” Circulation Research, vol. 101, no. 8, pp. 784–791, 2007.
[184]
R. J. Lechleider, J. L. Ryan, L. Garrett et al., “Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion,” Developmental Biology, vol. 240, no. 1, pp. 157–167, 2001.
[185]
H. Chang, D. Huylebroeck, K. Verschueren, Q. Guo, M. M. Matzuk, and A. Zwijsen, “Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects,” Development, vol. 126, no. 8, pp. 1631–1642, 1999.
[186]
J. S. De Jong, P. J. Van Diest, P. Van Der Valk, and J. P. A. Baak, “Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: correlations with proliferation and angiogenesis,” Journal of Pathology, vol. 184, no. 1, pp. 53–57, 1998.
[187]
Y. Hasegawa, S. Takanashi, Y. Kanehira, T. Tsushima, T. Imai, and K. Okumura, “Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma,” Cancer, vol. 91, no. 5, pp. 964–971, 2001.
[188]
L. Pertovaara, A. Kaipainen, T. Mustonen et al., “Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells,” Journal of Biological Chemistry, vol. 269, no. 9, pp. 6271–6274, 1994.
[189]
T. Shimo, T. Nakanishi, T. Nishida et al., “Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis,” Oncology, vol. 61, no. 4, pp. 315–322, 2001.
[190]
H. G. Hagedorn, B. E. Bachmeier, and A. G. Nerlich, “Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-beta in invasive carcinomas (Review),” International Journal of Oncology, vol. 18, no. 4, pp. 669–681, 2001.
[191]
B. Enholm, K. Paavonen, A. Ristim?ki et al., “Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia,” Oncogene, vol. 14, no. 20, pp. 2475–2483, 1997.
[192]
O. De Wever and M. Mareel, “Role of tissue stroma in cancer cell invasion,” Journal of Pathology, vol. 200, no. 4, pp. 429–447, 2003.
[193]
Y. Kojima, A. Acar, E. N. Eaton et al., “Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 46, pp. 20009–20014, 2010.
[194]
T. M. Casey, J. Eneman, A. Crocker et al., “Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-β1) increase invasion rate of tumor cells: a population study,” Breast Cancer Research and Treatment, vol. 110, no. 1, pp. 39–49, 2008.
[195]
A. M. Sieuwerts, J. G. M. Klijn, S. C. Henzen-Logmans et al., “Urokinase-type-plasminogen-activator(UPA) production by human breast (MYO)fibroblasts in vitro: influence of transforming growth factor-β1 (TGFβ1) compared with factor(S) released by human epithelial-carcinoma cells,” International Journal of Cancer, vol. 76, no. 6, pp. 829–835, 1998.
[196]
J. P. Thiery, “Epithelial-mesenchymal transitions in development and pathologies,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 740–746, 2003.
[197]
R. Derynck and R. J. Akhurst, “Differentiation plasticity regulated by TGF-β family proteins in development and disease,” Nature Cell Biology, vol. 9, no. 9, pp. 1000–1004, 2007.
[198]
S. Thuault, U. Valcourt, M. Petersen, G. Manfioletti, C. H. Heldin, and A. Moustakas, “Transforming growth factor-β employs HMGA2 to elicit epithelial-mesenchymal transition,” Journal of Cell Biology, vol. 174, no. 2, pp. 175–183, 2006.
[199]
P. J. Miettinen, R. Ebner, A. R. Lopez, and R. Derynck, “TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors,” Journal of Cell Biology, vol. 127, no. 6, pp. 2021–2036, 1994.
[200]
M. Oft, J. Peli, C. Rudaz, H. Schwarz, H. Beug, and E. Reichmann, “TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells,” Genes and Development, vol. 10, no. 19, pp. 2462–2477, 1996.
[201]
G. Portella, S. A. Cumming, J. Liddell et al., “Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion,” Cell Growth and Differentiation, vol. 9, no. 5, pp. 393–404, 1998.
[202]
K. M. Hajra, David Y-S. Chen, and E. R. Fearon, “The SLUG zinc-finger protein represses E-cadherin in breast cancer,” Cancer Research, vol. 62, no. 6, pp. 1613–1618, 2002.
[203]
P. Savagner, K. M. Yamada, and J. P. Thiery, “The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition,” Journal of Cell Biology, vol. 137, no. 6, pp. 1403–1419, 1997.
[204]
B. Ozdamar, R. Bose, M. Barrios-Rodiles, H. R. Wang, Y. Zhang, and J. L. Wrana, “Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity,” Science, vol. 307, no. 5715, pp. 1603–1609, 2005.
[205]
M. Oft, R. J. Akhurst, and A. Balmain, “Metastasis is driven by sequential elevation of H-ras and Smad2 levels,” Nature Cell Biology, vol. 4, no. 7, pp. 487–494, 2002.
[206]
E. Janda, K. Lehmann, I. Killisch et al., “Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways,” Journal of Cell Biology, vol. 156, no. 2, pp. 299–313, 2002.
[207]
J. Gotzmann, H. Huber, C. Thallinger et al., “Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness,” Journal of Cell Science, vol. 115, no. 6, pp. 1189–1202, 2002.
[208]
L. Larue and A. Bellacosa, “Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways,” Oncogene, vol. 24, no. 50, pp. 7443–7454, 2005.
[209]
J. Zavadil, M. Bitzer, D. Liang et al., “Genetic programs of epithelial cell plasticity directed by transforming growth factor-β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6686–6691, 2001.
[210]
L. Xie, B. K. Law, A. M. Chytil, K. A. Brown, M. E. Aakre, and H. L. Moses, “Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro,” Neoplasia, vol. 6, no. 5, pp. 603–610, 2004.
[211]
V. Ellenrieder, S. F. Hendler, W. Boeck et al., “Transforming growth factor β1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation,” Cancer Research, vol. 61, no. 10, pp. 4222–4228, 2001.
[212]
M. Gr?nde, ?. Franzen, J.-O. Karlsson, L. E. Ericson, N.-E. Heldin, and M. Nilsson, “Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes,” Journal of Cell Science, vol. 115, no. 22, pp. 4227–4236, 2002.
[213]
N. R. Christoffersen, A. Silahtaroglu, U. A. ?rom, S. Kauppinen, and A. H. Lund, “miR-200b mediates post-transcriptional repression of ZFHX1B,” RNA, vol. 13, no. 8, pp. 1172–1178, 2007.
[214]
F. E. Ahmed, “Role of miRNA in carcinogenesis and biomarker selection: a methodological view,” Expert Review of Molecular Diagnostics, vol. 7, no. 5, pp. 569–603, 2007.
[215]
M. Selbach, B. Schwanh?usser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky, “Widespread changes in protein synthesis induced by microRNAs,” Nature, vol. 455, no. 7209, pp. 58–63, 2008.
[216]
D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel, “The impact of microRNAs on protein output,” Nature, vol. 455, no. 7209, pp. 64–71, 2008.
[217]
A. A. Burrow, L. E. Williams, L. C. T. Pierce, and Y. H. Wang, “Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites,” BMC Genomics, vol. 10, article no. 59, 2009.
[218]
L. Boominathan, “The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex,” PloS One, vol. 5, no. 5, Article ID e10615, 2010.
[219]
J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with ‘antagomirs’,” Nature, vol. 438, no. 7068, pp. 685–689, 2005.
[220]
G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002.
[221]
M. V. Iorio, M. Ferracin, C. G. Liu et al., “MicroRNA gene expression deregulation in human breast cancer,” Cancer Research, vol. 65, no. 16, pp. 7065–7070, 2005.
[222]
G. A. Calin, M. Ferracin, A. Cimmino et al., “A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia,” New England Journal of Medicine, vol. 353, no. 17, pp. 1793–1801, 2005.
[223]
G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004.
[224]
B. Qian, D. Katsaros, L. Lu et al., “High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1,” Breast Cancer Research and Treatment, vol. 117, no. 1, pp. 131–140, 2009.
[225]
A. Schaefer, M. Jung, H. J. Mollenkopf et al., “Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma,” International Journal of Cancer, vol. 126, no. 5, pp. 1166–1176, 2010.
[226]
L. Jiang, P. Mao, L. Song et al., “miR-182 as a prognostic marker for glioma progression and patient survival,” American Journal of Pathology, vol. 177, no. 1, pp. 29–38, 2010.
[227]
Y. Zhang, M. Li, H. Wang et al., “Profiling of 95 MicroRNAs in pancreatic cancer cell lines and surgical specimens by real-time PCR analysis,” World Journal of Surgery, vol. 33, no. 4, pp. 698–709, 2009.
[228]
G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006.
[229]
A. Ventura and T. Jacks, “MicroRNAs and cancer: short RNAs go a long way,” Cell, vol. 136, no. 4, pp. 586–591, 2009.
[230]
P. A. Gregory, C. P. Bracken, A. G. Bert, and G. J. Goodall, “MicroRNAs as regulators of epithelial-mesenchymal transition,” Cell Cycle, vol. 7, no. 20, pp. 3112–3117, 2008.
[231]
C. P. Bracken, P. A. Gregory, N. Kolesnikoff et al., “A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition,” Cancer Research, vol. 68, no. 19, pp. 7846–7854, 2008.
[232]
S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes and Development, vol. 22, no. 7, pp. 894–907, 2008.
[233]
S. Valastyan, F. Reinhardt, N. Benaich et al., “A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis,” Cell, vol. 137, no. 6, pp. 1032–1046, 2009.
[234]
M. Korpal, E. S. Lee, G. Hu, and Y. Kang, “The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2,” Journal of Biological Chemistry, vol. 283, no. 22, pp. 14910–14914, 2008.
[235]
J. Javor, S. Ferencik, M. Bucova et al., “Polymorphisms in the genes encoding TGF-β1, TNF-α, and IL-6 show association with type 1 diabetes mellitus in the Slovak population,” Archivum Immunologiae et Therapiae Experimentalis, vol. 58, no. 5, pp. 385–393, 2010.
[236]
U. Burk, J. Schubert, U. Wellner et al., “A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells,” EMBO Reports, vol. 9, no. 6, pp. 582–589, 2008.
[237]
J. Heino, R. A. Ignotz, M. E. Hemler, C. Crouse, and J. Massague, “Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β1 subunit,” Journal of Biological Chemistry, vol. 264, no. 1, pp. 380–388, 1989.
[238]
A. Moustakas and C. H. Heldin, “Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression,” Cancer Science, vol. 98, no. 10, pp. 1512–1520, 2007.
[239]
N. Dumont, A. V. Bakin, and C. L. Arteaga, “Autocrine transforming growth factor-β signaling mediates Smad-independent motility in human cancer cells,” Journal of Biological Chemistry, vol. 278, no. 5, pp. 3275–3285, 2003.
[240]
A. Tsapara, P. Luthert, J. Greenwood, C. S. Hill, K. Matter, and M. S. Balda, “The RhoA activator GEF-H1/Lfc is a transforming growth factor-β target gene and effector that regulates α-smooth muscle actin expression and cell migration,” Molecular Biology of the Cell, vol. 21, no. 6, pp. 860–870, 2010.
[241]
W. Kong, H. Yang, L. He et al., “MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA,” Molecular and Cellular Biology, vol. 28, no. 22, pp. 6773–6784, 2008.
[242]
N. Fils-Aimé, M. Dai, J. Guo, J. C. Neel, and J.-J. Lebrun, “Micro-RNA-584 and PHACTR1: new signaling route through which transforming growth factor-beta mediates the migration and actin dynamics of breast cancer cells,” The Journal of Biological Chemistry. In press.
[243]
J. C. Neel and J.-J. Lebrun, “TGFβ/Activin A-induced miR-181 induces cellular migration and invasion in breast cancer cells,” Cellular Signalling. In press.
[244]
E. Wiercinska, H. P. H. Naber, E. Pardali, G. Van Der Pluijm, H. Van Dam, and P. Ten Dijke, “The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system,” Breast Cancer Research and Treatment, vol. 128, no. 3, pp. 657–666, 2011.
[245]
G. Giannelli, E. Fransvea, F. Marinosci et al., “Transforming growth factor-β1 triggers hepatocellular carcinoma invasiveness via α3β1 integrin,” American Journal of Pathology, vol. 161, no. 1, pp. 183–193, 2002.
[246]
G. Giannelli, S. Astigiano, S. Antonaci et al., “Role of the α3β1 and α6β4 integrins in tumor invasion,” Clinical and Experimental Metastasis, vol. 19, no. 3, pp. 217–223, 2002.
[247]
B. Wang, S. H. Hsu, S. Majumder et al., “TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3,” Oncogene, vol. 29, no. 12, pp. 1787–1797, 2010.
[248]
G. Han, S.-L. Lu, A. G. Li et al., “Distinct mechanisms of TGF-β1-mediated epithelial-to- mesenchymal transition and metastasis during skin carcinogenesis,” Journal of Clinical Investigation, vol. 115, no. 7, pp. 1714–1723, 2005.
[249]
Y. Wang, Y. Yu, A. Tsuyada et al., “Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM,” Oncogene, vol. 30, no. 12, pp. 1470–1480, 2011.
[250]
M. Dai, A. A. Al-Odaini, A. Arakelian, S. A. Rabbani, S. Ali, and J.-J. Lebrun, “A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFβ-mediated breast cancer cell migration and invasion,” Breast Cancer Research, vol. 14, no. 5, article no. R127, 2012.
[251]
A. AlOdaini, M. Dai, Y. Wang, S. Ali, and J.-J. Lebrun, “KiSS1 gene as a novel mediator of TGFβ pro-invasive effects in triple negative breast cancer,” In press.
[252]
G. P. Gupta and J. Massagué, “Cancer metastasis: building a framework,” Cell, vol. 127, no. 4, pp. 679–695, 2006.
[253]
L. A. Kingsley, P. G. J. Fournier, J. M. Chirgwin, and T. A. Guise, “Molecular biology of bone metastasis,” Molecular Cancer Therapeutics, vol. 6, no. 10, pp. 2609–2617, 2007.
[254]
J. J. Yin, K. Selander, J. M. Chirgwin et al., “TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development,” Journal of Clinical Investigation, vol. 103, no. 2, pp. 197–206, 1999.
[255]
D. Javelaud, K. S. Mohammad, C. R. McKenna et al., “Stable overexpression of Smad7 in human melanoma cells impairs bone metastasis,” Cancer Research, vol. 67, no. 5, pp. 2317–2324, 2007.
[256]
S. L. Kominsky, M. Doucet, K. Brady, and K. L. Weber, “TGF-β promotes the establishment of renal cell carcinoma bone metastasis,” Journal of Bone and Mineral Research, vol. 22, no. 1, pp. 37–44, 2007.
[257]
E. Bertran, L. Caja, E. Navarro et al., “Role of CXCR4/SDF-1α in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-β,” Cellular Signalling, vol. 21, no. 11, pp. 1595–1606, 2009.
[258]
J. Wang, R. Loberg, and R. S. Taichman, “The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis,” Cancer and Metastasis Reviews, vol. 25, no. 4, pp. 573–587, 2006.
[259]
N. Franchimont, S. Rydziel, and E. Canalis, “Transforming growth factor-β increases interleukin-6 transcripts in osteoblasts,” Bone, vol. 26, no. 3, pp. 249–253, 2000.
[260]
S. M. Wahl, G. L. Costa, M. Corcoran, L. M. Wahl, and A. E. Berger, “Transforming growth factor-β mediates IL-1-dependent induction of IL-1 receptor antagonist,” Journal of Immunology, vol. 150, no. 8 I, pp. 3553–3560, 1993.
[261]
K. T. Steeve, P. Marc, T. Sandrine, H. Dominique, and F. Yannick, “IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology,” Cytokine and Growth Factor Reviews, vol. 15, no. 1, pp. 49–60, 2004.
[262]
P. M. Siegel, W. Shu, R. D. Cardiff, W. J. Muller, and J. Massagué, “Transforming growth factor β signaling impairs neu-induced mammary tumorigenesis while promoting pulmonary metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8430–8435, 2003.
[263]
D. Padua, X. H. F. Zhang, Q. Wang et al., “TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like4,” Cell, vol. 133, no. 1, pp. 66–77, 2008.
[264]
P. D. Bos, X. H.-F. Zhang, C. Nadal et al., “Genes that mediate breast cancer metastasis to the brain,” Nature, vol. 459, no. 7249, pp. 1005–1009, 2009.
[265]
A. V. Nguyen and J. W. Pollard, “Transforming growth factor β3 induces cell death during the first stage of mammary gland involution,” Development, vol. 127, no. 14, pp. 3107–3118, 2000.
[266]
M. Mieth, F. D. Boehmer, R. Ball, B. Groner, and R. Grosse, “Transforming growth factor-β inhibits lactogenic hormone induction of β-casein expression in HC11 mouse mammary epithelial cells,” Growth Factors, vol. 4, no. 1, pp. 9–15, 1990.
[267]
H. Rui, J.-J. Lebrun, R. A. Kirken, P. A. Kelly, and W. L. Farrar, “JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization,” Endocrinology, vol. 135, no. 4, pp. 1299–1306, 1994.
[268]
H. Rui, R. A. Kirken, and W. L. Farrar, “Activation of receptor-associated tyrosine kinase JAK2 by prolactin,” Journal of Biological Chemistry, vol. 269, no. 7, pp. 5364–5368, 1994.
[269]
I. Dusanter-Fourt, O. Muller, A. Ziemiecki et al., “Identification of JAK protein tyrosine kinases as signaling molecules for prolactin. Functional analysis of prolactin receptor and prolactin—erythropoietin receptor chimera expressed in lymphoid cells,” EMBO Journal, vol. 13, no. 11, pp. 2583–2591, 1994.
[270]
J.-J. Lebrun, S. Ali, A. Ullrich, and P. A. Kelly, “Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction,” Journal of Biological Chemistry, vol. 270, no. 18, pp. 10664–10670, 1995.
[271]
J.-J. Lebrun, S. Ali, V. Goffin, A. Ullrich, and P. A. Kelly, “A single phosphotyrosine residue of the prolactin receptor is responsible for activation of gene transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 4031–4035, 1995.
[272]
J.-J. Lebrun, S. Ali, L. Sofer, A. Ullrich, and P. A. Kelly, “Prolactin-induced proliferation of nb2 cells involves tyrosine phosphorylation of the prolactin receptor and its associated tyrosine kinase JAK2,” Journal of Biological Chemistry, vol. 269, no. 19, pp. 14021–14026, 1994.
[273]
S. Ali, Z. Chen, J.-J. Lebrun et al., “PTP1D is a positive regulator of the prolactin signal leading to β-casein promoter activation,” EMBO Journal, vol. 15, no. 1, pp. 135–142, 1996.
[274]
M. Schmitt-Ney, W. Doppler, R. K. Ball, and B. Groner, “β-Casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor,” Molecular and Cellular Biology, vol. 11, no. 7, pp. 3745–3755, 1991.
[275]
H. C. Kirch, B. Putzer, D. Brockmann, H. Esche, and O. Kloke, “Formation of the early-region-2 transcription-factor-1—retinoblastoma-protein (E2F-1-RB) transrepressor and release of the retinoblastoma protein from nuclear complexes containing cyclin A is induced by interferon α in U937V cells but not in interferon-α-resistant U937VR cells,” European Journal of Biochemistry, vol. 246, no. 3, pp. 736–744, 1997.
[276]
N. Chughtai, S. Schimchowitsch, J.-J. Lebrun, and S. Ali, “Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the β-casein gene promoter in mammary cells,” Journal of Biological Chemistry, vol. 277, no. 34, pp. 31107–31114, 2002.
[277]
X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen, “Stat5a is mandatory for adult mammary gland development and lactogenesis,” Genes and Development, vol. 11, no. 2, pp. 179–186, 1997.
[278]
Z. Nouhi, N. Chughtai, S. Hartley, E. Cocolakis, J.-J. Lebrun, and S. Ali, “Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells,” Cancer Research, vol. 66, no. 3, pp. 1824–1832, 2006.
[279]
C. W. Daniel, S. Robinson, and G. B. Silberstein, “The transforming growth factors beta in development and functional differentiation of the mouse mammary gland,” Advances in Experimental Medicine and Biology, vol. 501, pp. 61–70, 2001.
[280]
E. Faure, N. Heisterkamp, J. Groffen, and V. Kaartinen, “Differential expression of TGF-β isoforms during postlactational mammary gland involution,” Cell and Tissue Research, vol. 300, no. 1, pp. 89–95, 2000.
[281]
R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis, “Apoptotic cell death and tissue remodelling during mouse mammary gland involution,” Development, vol. 115, no. 1, pp. 49–58, 1992.
[282]
S. D. Robinson, G. B. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel, “Regulated expression and growth inhibitory effects of transforming growth factor-β isoforms in mouse mammary gland development,” Development, vol. 113, no. 3, pp. 867–878, 1991.
[283]
S. D. Robinson, A. B. Roberts, and C. W. Daniel, “TGFβ suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy,” Journal of Cell Biology, vol. 120, no. 1, pp. 245–252, 1993.
[284]
A. W. Sudlow, C. J. Wilde, and R. D. Burgoyne, “Transforming growth factor-β1 inhibits casein secretion from differentiating mammary-gland explants but not from lactating mammary cells,” Biochemical Journal, vol. 304, part 2, pp. 333–336, 1994.
[285]
C. Jhappan, A. G. Geiser, E. C. Kordon et al., “Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation,” EMBO Journal, vol. 12, no. 5, pp. 1835–1845, 1993.
[286]
D. F. Pierce, M. D. Johnson, Y. Matsui et al., “Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β1,” Genes and Development, vol. 7, no. 12 A, pp. 2308–2317, 1993.
[287]
E. Cocolakis, M. Dai, L. Drevet et al., “Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation,” Journal of Biological Chemistry, vol. 283, no. 3, pp. 1293–1307, 2008.
[288]
C. Grütter, T. Wilkinson, R. Turner et al., “A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20251–20256, 2008.
[289]
A. Benigni, C. Zoja, D. Corna et al., “Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat,” Journal of the American Society of Nephrology, vol. 14, no. 7, pp. 1816–1824, 2003.
[290]
S. Ananth, B. Knebelmann, W. Grüning et al., “Transforming growth factor β1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma,” Cancer Research, vol. 59, no. 9, pp. 2210–2216, 1999.
[291]
J. C. Morris, G. I. Shapiro, and A. R. Tan, “Phase I/II study of GC1008: a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC),” Journal of Clinical Oncology, vol. 26, supplement, abstract no. 9028, 2008.
[292]
J. E. Thompson, T. J. Vaughan, A. J. Williams et al., “A fully human antibody neutralising biologically active human TGFβ2 for use in therapy,” Journal of Immunological Methods, vol. 227, no. 1-2, pp. 17–29, 1999.
[293]
A. L. Mead, T. T. L. Wong, M. F. Cordeiro, I. K. Anderson, and P. T. Khaw, “Evaluation of anti-TGF-β2 antibody as a new postoperative anti-scarring agent in glaucoma surgery,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3394–3401, 2003.
[294]
C. Hill, A. Flyvbjerg, R. Rasch, M. Bak, and A. Logan, “Transforming growth factor-β2 antibody attenuates fibrosis in the experimental diabetic rat kidney,” Journal of Endocrinology, vol. 170, no. 3, pp. 647–651, 2001.
[295]
C. P. Denton, P. A. Merkel, D. E. Furst et al., “Recombinant human anti-transforming growth factor β1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192,” Arthritis and Rheumatism, vol. 56, no. 1, pp. 323–333, 2007.
[296]
D. Bonafoux and W. C. Lee, “Strategies for TGF-β modulation: a review of recent patents,” Expert Opinion on Therapeutic Patents, vol. 19, no. 12, pp. 1759–1769, 2009.
[297]
P. Khaw, F. Grehn, G. Holló, et al., “A phase III study of subconjunctival human anti-transforming growth factor β2 monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy,” Ophthalmology, vol. 114, no. 10, pp. 1822–1830, 2007.
[298]
Cambridge Antibody Technology, website, 2010.
[299]
J. R. Dasch, D. R. Pace, W. Waegell, D. Inenaga, and L. Ellingsworth, “Monoclonal antibodies recognizing transforming growth factor-β: bioactivity neutralization and transforming growth factor β2 affinity purification,” Journal of Immunology, vol. 142, no. 5, pp. 1536–1541, 1989.
[300]
C. L. Arteaga, S. D. Hurd, A. R. Winnier, M. D. Johnson, B. M. Fendly, and J. T. Forbes, “Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression,” Journal of Clinical Investigation, vol. 92, no. 6, pp. 2569–2576, 1993.
M. Lahn, S. Kloeker, and B. S. Berry, “TGF-β inhibitors for the treatment of cancer,” Expert Opinion on Investigational Drugs, vol. 14, no. 6, pp. 629–641, 2005.
[303]
M. A. Rowland-Goldsmith, H. Maruyama, T. Kusama, S. Ralli, and M. Korc, “Soluble type II transforming growth factor-β (TGF-β) receptor inhibits TGF-β signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation,” Clinical Cancer Research, vol. 7, no. 9, pp. 2931–2940, 2001.
[304]
M. A. Rowland-Goldsmith, H. Maruyama, K. Matsuda et al., “Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis,” Molecular Cancer Therapeutics, vol. 1, no. 3, pp. 161–167, 2002.
[305]
F. Lopez-Casillas, H. M. Payne, J. L. Andres, and J. Massague, “Betaglycan can act as a dual modulator of TGF-β access to signaling receptors: mapping of ligand binding and GAG attachment sites,” Journal of Cell Biology, vol. 124, no. 4, pp. 557–568, 1994.
[306]
W. A. Border, N. A. Noble, T. Yamamoto et al., “Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease,” Nature, vol. 360, no. 6402, pp. 361–364, 1992.
[307]
S. Komesli, D. Vivien, and P. Dutartre, “Chimeric extracellular domain of type II transforming growth factor (TGF)-β receptor fused to the Fc region of human immunoglobulin as a TGF-β antagonist,” European Journal of Biochemistry, vol. 254, no. 3, pp. 505–513, 1998.
[308]
Y.-A. Yang, O. Dukhanina, B. Tang et al., “Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects,” Journal of Clinical Investigation, vol. 109, no. 12, pp. 1607–1615, 2002.
[309]
N. Hermida, B. López, A. González et al., “A synthetic peptide from transforming growth factor-β1 type III receptor prevents myocardial fibrosis in spontaneously hypertensive rats,” Cardiovascular Research, vol. 81, no. 3, pp. 601–609, 2009.
[310]
S. T. Crooke, “Molecular mechanisms of action of antisense drugs,” Biochimica et Biophysica Acta, vol. 1489, no. 1, pp. 31–43, 1999.
[311]
I. Tamm, B. D?rken, and G. Hartmann, “Antisense therapy in oncology: new hope for an old idea?” Lancet, vol. 358, no. 9280, pp. 489–497, 2001.
[312]
K. H. Schlingensiepen, “The TGF-beta1 antisense oligonucleotide AP, 11014 for the treatment of non-small cell lung, colorectal and prostate cancer: preclinical studies,” Journal of Clinical Oncology, vol. 22, abstract no. 3132, 2004.
[313]
D. Fischer, A. Bischof, T. Egger, et al., “Simultaneous reversal of immunosuppression, inhibition of tumor growth and migration by the TGF-beta1 antisense oligonucleotide AP, 11014 in prostatic, colorectal and non-small cell lung cancer,” in Proceedings of the American Association for Cancer Research Meeting, vol. 46, abstract no. 592, 2005.
[314]
G. Stauder, A. Bischof, T. Egger, et al., “TGF-β2 suppression by the antisense oligonucleotide AP, 12009 as treatment for pancreatic cancer: preclinical efficacy data,” Journal of Clinical Oncology, vol. 22, supplement, abstract no. 4106, no. 14s, 2004.
[315]
K. H. Schlingensiepen, R. Schlingensiepen, A. Steinbrecher et al., “Targeted tumor therapy with the TGF-β2 antisense compound AP 12009,” Cytokine and Growth Factor Reviews, vol. 17, no. 1-2, pp. 129–139, 2006.
[316]
P. Hau, P. Jachimczak, R. Schlingensiepen et al., “Inhibition of TGF-β2 with ap 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies,” Oligonucleotides, vol. 17, no. 2, pp. 201–212, 2007.
C. D. Yingling, “Dihydropyrrolopyrazoles as TGFβ receptor kinase inhibitors for cancer therapy,” in Proceedings of the 16th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, abstract 318, 2004.
[319]
E. Calvo-Aller, J. Baselga, S. Glatt, et al., “First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-beta receptor I kinase,” Journal of Clinical Oncology, vol. 26, supplement, abstract no. 14554, 2008.
[320]
G. Subramanian, R. E. Schwarz, L. Higgins et al., “Targeting endogenous transforming growth factor β receptor signaling in Smad4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype,” Cancer Research, vol. 64, no. 15, pp. 5200–5211, 2004.
[321]
S. B. Peng, L. Yan, X. Xia et al., “Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition,” Biochemistry, vol. 44, no. 7, pp. 2293–2304, 2005.
[322]
R. Ge, V. Rajeev, G. Subramanian et al., “Selective inhibitors of type I receptor kinase block cellular transforming growth factor-β signaling,” Biochemical Pharmacology, vol. 68, no. 1, pp. 41–50, 2004.
[323]
M. Uhl, S. Aulwurm, J. Wischhusen et al., “SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo,” Cancer Research, vol. 64, no. 21, pp. 7954–7961, 2004.
[324]
T.-T. Tran, M. Uhl, Y. M. Jing et al., “Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model,” Neuro-Oncology, vol. 9, no. 3, pp. 259–270, 2007.
[325]
N. J. Laping, E. Grygielko, A. Mathur et al., “Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542,” Molecular Pharmacology, vol. 62, no. 1, pp. 58–64, 2002.
[326]
B. Zhang, S. K. Halder, S. Zhang, and P. K. Datta, “Targeting transforming growth factor-β signaling in liver metastasis of colon cancer,” Cancer Letters, vol. 277, no. 1, pp. 114–120, 2009.
[327]
D. Melisi, S. Ishiyama, G. M. Sclabas et al., “LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 829–840, 2008.
[328]
Y. Fukai, M. Fukuchi, N. Masuda et al., “Reduced expression of transforming growth factor-β receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma,” International Journal of Cancer, vol. 104, no. 2, pp. 161–166, 2003.
[329]
A. Miyajima, T. Asano, K. Seta, T. Asano, N. Kakoi, and M. Hayakawa, “Loss of expression of transforming growth factor-beta receptor as a prognostic factor in patients with renal cell carcinoma,” Urology, vol. 61, no. 5, pp. 1072–1077, 2003.
[330]
T. Watanabe, T. T. Wu, P. J. Catalano et al., “Molecular predictors of survival after adjuvant chemotherapy for colon cancer,” New England Journal of Medicine, vol. 344, no. 16, pp. 1196–1206, 2001.
[331]
M. Tateishi, I. Kusaba, H. Masuda, T. Tanaka, T. Matsumata, and K. Sugimachi, “The progression of invasiveness regarding the role of transforming growth factor β receptor type II in gastric cancer,” European Journal of Surgical Oncology, vol. 26, no. 4, pp. 377–380, 2000.
[332]
A. N. Houghton and D. Polsky, “Focus on melanoma,” Cancer Cell, vol. 2, no. 4, pp. 275–278, 2002.
[333]
L. Ramont, S. Pasco, W. Hornebeck, F. X. Maquart, and J. C. Monboisse, “Transforming growth factor-β1 inhibits tumor growth in a mouse melanoma model by down-regulating the plasminogen activation system,” Experimental Cell Research, vol. 291, no. 1, pp. 1–10, 2003.
[334]
L. Humbert and J.-J. Lebrun, “TGF-beta inhibits human cutaneous melanoma cell migration and invasion through regulation of the plasminogen activator system,” Cellular Signalling, vol. 25, no. 2, pp. 490–500, 2012.