For the first time a microcystin-degrading bacterium (NV-3 isolate) has been isolated and characterized from a NZ lake. Cyanobacterial blooms in New Zealand (NZ) waters contain microcystin (MC) hepatotoxins at concentrations which are a risk to animal and human health. Degradation of MCs by naturally occurring bacteria is an attractive bioremediation option for removing MCs from drinking and recreational water sources. The NV-3 isolate was identified by 16S rRNA sequence analysis and found to have 100% nucleotide sequence homology with the Sphingomonas MC-degrading bacterial strain MD-1 from Japan. The NV-3 isolate (concentration of ?CFU/mL) at 30°C degraded a mixture of [Dha7]MC-LR and MC-LR (concentration 25?μg/mL) at a maximum rate of 8.33?μg/mL/day. The intermediate by-products of [Dha7]MC-LR degradation were detected and similar to MC-LR degradation by-products. The presence of three genes (mlrA, mlrB, and mlrC), that encode three enzymes involved in the degradation of MC-LR, were identified in the NV-3 isolate. This study confirmed that degradation of [Dha7]MC-LR by the Sphingomonas isolate NV-3 occurred by a similar mechanism previously described for MC-LR by Sphingomonas strain MJ-PV (ACM-3962). This has important implications for potential bioremediation of toxic blooms containing a variety of MCs in NZ waters. 1. Introduction Toxic cyanobacterial blooms in eutrophic lakes, ponds, and reservoirs are a common occurrence around the world [1–3]. Cyanobacteria of the genera Microcystis, Anabaena, Nostoc, and Planktothrix produces a wide range of potent toxins, including a family of heptapeptide hepatotoxins, referred to as microcystins (MCs). Microcystins are the most frequently detected cyanobacterial toxins, which cause hepatotoxicity and tumor promotion in wild animals, livestock, and humans [2, 4, 5]. Epidemiological studies of primary liver cancer in China and the death of 56 patients during a dialysis treatment in Caruaru, Brazil triggered worldwide concern about toxicity of MCs [4, 5]. Approximately 75 variants of MCs have been identified and MC-L (leucine) R (arginine) is the most common variant of MC worldwide [1, 6–9]. Limited studies in New Zealand (NZ) have reported the occurrence of the [Dha7]MC-LR variant occurring with high frequency in NZ waters [3, 10, 11]. Microcystins are chemically stable over a wide range of temperature and pH, possibly as a result of their cyclic structure [12]. The toxins are also resistant to enzymatic hydrolysis by some general proteases, such as pepsin, trypsin, collagenase and chymotrypsin [13]. However,
References
[1]
S. G. Bell and G. A. Codd, “Cyanobacterial toxins and human health,” Reviews in Medical Microbiology, vol. 5, no. 4, pp. 256–264, 1994.
[2]
I. Chorus and J. Bartram, Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management, St. Edmundsbury Press, London, UK, 1999.
[3]
S. A. Wood, Bloom forming and toxic cyanobacteria in New Zealand: species diversity and distribution, cyanotoxin production and accumulation of microcystins in selected freshwater organisms [Ph.D. thesis], Victoria University, Massey University, Wellington, New Zealand, 2004.
[4]
E. M. Jochimsen, W. W. Carmichael, J. An et al., “Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil,” The New England Journal of Medicine, vol. 338, no. 13, pp. 873–878, 1998.
[5]
Y. Ueno, S. Nagata, T. Tsutsumi et al., “Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay,” Carcinogenesis, vol. 17, no. 6, pp. 1317–1321, 1996.
[6]
D. P. Botes, H. Kruger, and C. C. Viljoen, “Isolation and characterization of four toxins from the blue-green alga, Microcystis aeruginosa,” Toxicon, vol. 20, no. 6, pp. 945–954, 1982.
[7]
W. W. Carmichael, “Cyanobacteria secondary metabolites—the cyanotoxins,” Journal of Applied Bacteriology, vol. 72, no. 6, pp. 445–459, 1992.
[8]
K. L. Rinehart, K. Harada, M. Namikoshi et al., “Nodularin, microcystin, and the configuration of adda,” Journal of the American Chemical Society, vol. 110, no. 25, pp. 8557–8558, 1988.
[9]
R. W. Zurawell, H. Chen, J. M. Burke, and E. E. Prepas, “Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments,” Journal of Toxicology and Environmental Health B, vol. 8, no. 1, pp. 1–37, 2005.
[10]
S. A. Wood, M. W. Heath, P. T. Holland, R. Munday, G. B. McGregor, and K. G. Ryan, “Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand,” Toxicon, vol. 55, no. 4, pp. 897–903, 2010.
[11]
S. A. Wood, P. T. Holland, D. J. Stirling et al., “Survey of cyanotoxins in New Zealand water bodies between 2001 and 2004,” New Zealand Journal of Marine and Freshwater Research, vol. 40, no. 4, pp. 585–597, 2006.
[12]
L. A. Lawton and P. K. J. Robertson, “Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters,” Chemical Society Reviews, vol. 28, no. 4, pp. 217–224, 1999.
[13]
T. Saitou, N. Sugiura, T. Itayama, Y. Inamori, and M. Matsumura, “Degradation characteristics of microcystins by isolated bacteria from Lake Kasumigaura,” Journal of Water Supply: Research and Technology—AQUA, vol. 52, no. 1, pp. 13–18, 2003.
[14]
G. J. Jones, D. G. Bourne, R. L. Blakeley, and H. Doelle, “Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria,” Natural Toxins, vol. 2, no. 4, pp. 228–235, 1994.
[15]
D. G. Bourne, G. J. Jones, R. L. Blakeley, A. Jones, A. P. Negri, and P. Riddles, “Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR,” Applied and Environmental Microbiology, vol. 62, no. 11, pp. 4086–4094, 1996.
[16]
D. G. Bourne, P. Riddles, G. J. Jones, W. Smith, and R. L. Blakeley, “Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR,” Environmental Toxicology, vol. 16, no. 6, pp. 523–534, 2001.
[17]
S. A. Wood, L. R. Briggs, J. Sprosen et al., “Changes in concentrations of microcystins in rainbow trout, freshwater mussels, and cyanobacteria in Lakes Rotoiti and Rotoehu,” Environmental Toxicology, vol. 21, no. 3, pp. 205–222, 2006.
[18]
T. Somdee, Biodegradation of cyanobacterial hepatotoxins [Dha7] MC-LR and MC-LR by natural aquatic bacteria [Ph.D. thesis], Massey University, Wellington, New Zealand, 2010.
[19]
A. Kouzminov, J. G. Ruck, and S. A. Wood, “New Zealand risk management approach for toxic cyanobacteria in drinking water,” Australian and New Zealand Journal of Public Health, vol. 31, no. 3, pp. 275–281, 2007.
[20]
T. Saito, K. Okano, H. D. Park et al., “Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes,” FEMS Microbiology Letters, vol. 229, no. 2, pp. 271–276, 2003.
[21]
L. Ho, D. Hoefel, C. P. Saint, and G. Newcombe, “Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter,” Water Research, vol. 41, no. 20, pp. 4685–4695, 2007.
[22]
I. T. Cousins, D. J. Bealing, H. A. James, and A. Sutton, “Biodegradation of microcystin-LR by indigenous mixed bacterial populations,” Water Research, vol. 30, no. 2, pp. 481–485, 1996.
[23]
K. Lahti, J. Rapala, M. F?rdig, M. Niemel?, and K. Sivonen, “Persistence of cyanobacterial hepatotoxin, microcystin-LR in particulate material and dissolved in lake water,” Water Research, vol. 31, no. 5, pp. 1005–1012, 1997.
[24]
A. K. Y. Lam, E. E. Prepas, D. Spink, and S. E. Hrudey, “Chemical control of hepatotoxic phytoplankton blooms: implications for human health,” Water Research, vol. 29, no. 8, pp. 1845–1854, 1995.
[25]
J. Rapala, K. A. Berg, C. Lyra et al., “Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin,” International Journal of Systematic and Evolutionary Microbiology, vol. 55, no. 4, pp. 1563–1568, 2005.
[26]
H. D. Park, Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi, and K. Kato, “Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake,” Environmental Toxicology, vol. 16, no. 4, pp. 337–343, 2001.
[27]
L. Ho, T. Tang, P. T. Monis, and D. Hoefel, “Biodegradation of multiple cyanobacterial metabolites in drinking water supplies,” Chemosphere, vol. 87, no. 10, pp. 1149–1154, 2012.
[28]
H. Busse, E. B. M. Denner, and W. Lubitz, “Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics,” Journal of Biotechnology, vol. 47, no. 1, pp. 3–38, 1996.
[29]
K. Harada, S. Imanishi, H. Kato, M. Mizuno, E. Ito, and K. Tsuji, “Isolation of Adda from microcystin-LR by microbial degradation,” Toxicon, vol. 44, no. 1, pp. 107–109, 2004.
[30]
H. Ishii, M. Nishijima, and T. Abe, “Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium,” Water Research, vol. 38, no. 11, pp. 2667–2676, 2004.
[31]
P. M. Manage, C. Edwards, B. K. Singh, and L. A. Lawton, “Isolation and identification of novel microcystin-degrading bacteria,” Applied and Environmental Microbiology, vol. 75, no. 21, pp. 6924–6928, 2009.
[32]
A. Maruyama, H. Ishiwata, K. Kitamura et al., “Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill,” Microbial Ecology, vol. 46, no. 4, pp. 442–453, 2003.
[33]
T. Maruyama, H. D. Park, K. Ozawa et al., “Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium,” International Journal of Systematic and Evolutionary Microbiology, vol. 56, no. 1, pp. 85–89, 2006.
[34]
S. Takenaka and M. F. Watanabe, “Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease,” Chemosphere, vol. 34, no. 4, pp. 749–757, 1997.
[35]
A. M. Valeria, E. J. Ricardo, P. Stephan, and D. A. Wunderlin, “Degradation of Microcystin-RR by Sphingomonas sp. CBA4 isolated from San Roque reservoir (Córdoba—Argentina),” Biodegradation, vol. 17, no. 5, pp. 447–455, 2006.
[36]
S. Imanishi, H. Kato, M. Mizuno, K. Tsuji, and K. Harada, “Bacterial degradation of microcystins and nodularin,” Chemical Research in Toxicology, vol. 18, no. 3, pp. 591–598, 2005.
[37]
K. Tsuji, M. Asakawa, Y. Anzai, T. Sumino, and K. Harada, “Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake,” Chemosphere, vol. 65, no. 1, pp. 117–124, 2006.