全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Receptors and Lethal Effect of Bacillus thuringiensis Insecticidal Crystal Proteins to the Anticarsia gemmatalis (Lepidoptera, Noctuidae)

DOI: 10.1155/2013/940284

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bioassays with insecticidal crystal proteins (ICPs) from Bacillus thuringiensis have demonstrated that Cry1Aa, Cry1Ac, and Cry1Ba are the most active toxins on larvae of the Anticarsia gemmatalis. The toxins Cry1Da and Cry1Ea are less toxic, and toxins Cry2Aa are not active. Binding of these ICPs to midgut sections of the A. gemmatalis larvae was studied using streptavidin-mediated detection. The observed staining patterns showed that Cry1Aa and Cry1Ac bound to the brush border throughout the whole length of the midgut. However, the binding sites of Cry1Ba were not evenly distributed in the midgut microvilli. The in vivo assays against larvae of 2nd instar A. gemmatalis confirmed the results from the in vitro binding studies. These binding data correspond well with the bioassay results, demonstrating a correlation between receptors binding and toxicity of the tested ICPs in this insect. 1. Introduction Bacillus thuringiensis is one of the most widely used microorganisms for the biological control of insects [1–3]. This gram-positive spore-forming bacterium characteristically produces crystals containing one or several insecticidal crystal proteins—ICPs [4–7]. A novel nomenclature has been proposed based exclusively on amino acid identity. Currently, more than 560 cry genes have been identified and classified into 68 classes based on the homology of their proteins (http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt). The cry genes code for proteins with a range of molecular masses from 50 to 140?kDa [8, 9]. Lepidopteran-specific ICPs are typically produced as bipyramidal crystals that are solubilized in the often alkaline environment (pH 10 to 12) of the larval midgut [10–13]. These proteins, belonging to the Cry1 class of ICPs, are protoxins with a range of molecular masses from 130 to 140?kDa [9, 14] that are proteolytically activated by midgut proteases to toxic protease-resistant fragments (55 to 70?kDa) corresponding to the N-terminal half of the protoxin [14–16]. The delta-endotoxins bind with high affinity to proteins located in the midgut brush border membrane of susceptible insects [17–21]. Following the binding, the toxic fragment or a part of it inserts in to the membrane forming pores [22–24]. The formation of pores in the plasmatic membrane of the cells causes an ionic unbalance between the cytoplasm and the outside environment of the cell. The first effects are the stoppage of feeding and the paralysis of the gut, which causes the insect to die [5, 14, 23, 24]. Traditionally, the binding has been studied using native or biotinylated

References

[1]  R. A. de Maagd, D. Bosch, and W. Stiekema, “Bacillus thuringiensis toxin-mediated insect resistance in plants,” Trends in Plant Science, vol. 4, no. 1, pp. 9–13, 1999.
[2]  L. A. Lacey and M. S. Goettel, “Current developments in microbial control of insect pests and prospects for the early 21st century,” Entomophaga, vol. 40, no. 1, pp. 3–27, 1995.
[3]  B. Lambert and M. Peferoen, “Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide,” Bioscience, vol. 42, pp. 112–122, 1992.
[4]  S. S. Gill, E. A. Cowles, and P. V. Pietrantonio, “The mode of action of Bacillus thuringiensis endotoxins,” Annual Review of Entomology, vol. 37, no. 1, pp. 615–636, 1992.
[5]  S. S. Gill, “Mechanism of action of Bacillus thuringiensis toxins,” Memórias do Instituto Oswaldo Cruz, vol. 90, no. 1, pp. 69–74, 1995.
[6]  H. Hofte, J. van Rie, S. Jansens, A. van Houtven, H. Vanderbruggen, and M. Vaeck, “Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis,” Applied and Environmental Microbiology, vol. 54, no. 8, pp. 2010–2017, 1988.
[7]  M. Miyasono, S. Inagaki, M. Yamamoto et al., “Enhancement of delta-endotoxin activity by toxin-free spore of Bacillus thuringiensis against the diamondback moth, Plutella xylostella,” Journal of Invertebrate Pathology, vol. 63, no. 1, pp. 111–112, 1994.
[8]  A. Bravo, “Phylogenetic relationships of Bacillus thuringiensisδ-endotoxin family proteins and their functional domains,” Journal of Bacteriology, vol. 179, no. 9, pp. 2793–2801, 1997.
[9]  E. Schnepf, N. Crickmore, J. van Rie et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998.
[10]  A. I. Aronson, “The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival,” Molecular Microbiology, vol. 7, no. 4, pp. 489–496, 1993.
[11]  A. Aronson, “The protoxin composition of Bacillus thuringiensis insecticidal inclusions affects solubility and toxicity,” Applied and Environmental Microbiology, vol. 61, no. 11, pp. 4057–4060, 1995.
[12]  D. U. Cheng and K. W. Nickerson, “The Bacillus thuringiensis insecticidal toxin binds biotin-containing proteins,” Applied and Environmental Microbiology, vol. 62, no. 8, pp. 2932–2939, 1996.
[13]  B. Lambert, L. Buysse, C. Decock et al., “A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family noctuidae,” Applied and Environmental Microbiology, vol. 62, no. 1, pp. 80–86, 1996.
[14]  H. Hofte and H. R. Whiteley, “Insecticidal crystal proteins of Bacillus thuringiensis,” Microbiological Reviews, vol. 53, no. 2, pp. 242–255, 1989.
[15]  J. A. Baum and T. Malvar, “Regulation of insecticidal crystal protein production in Bacillus thuringiensis,” Molecular Microbiology, vol. 18, no. 1, pp. 1–12, 1995.
[16]  J. A. Baum, M. Kakefuda, and C. Gawron-Burke, “Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system,” Applied and Environmental Microbiology, vol. 62, no. 12, pp. 4367–4373, 1996.
[17]  U. Estada and J. Ferre, “Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins,” Applied and Environmental Microbiology, vol. 60, no. 10, pp. 3840–3846, 1994.
[18]  L.-M. Fiuza, C. Nielsen-Leroux, E. Goze, R. Frutos, and J.-F. Charles, “Binding of Bacillus thuringiensis Cry1 toxins to the midgut brush border membrane vesicles of Chilo suppressalis (Lepidoptera: Pyralidae): evidence of shared binding sites,” Applied and Environmental Microbiology, vol. 62, no. 5, pp. 1544–1549, 1996.
[19]  C. Hofmann, H. Vanderbruggen, H. Hofte, J. van Rie, S. Jansens, and H. van Mellaert, “Specificity of Bacillus thuringiensisδ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 7844–7848, 1988.
[20]  M. K. Lee, R. M. Aguda, M. B. Cohen, F. L. Gould, and D. H. Dean, “Determination of binding of Bacillus thuringiensisδ-endotoxin receptors to rice stem borer midguts,” Applied and Environmental Microbiology, vol. 63, no. 4, pp. 1453–1459, 1997.
[21]  J. van Rie, S. Jansens, H. Hofte, D. Degheele, and H. van Mellaert, “Specificity of Bacillus thuringiensisδ-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects,” European Journal of Biochemistry, vol. 186, no. 1-2, pp. 239–247, 1989.
[22]  B. H. Knowles, P. J. K. Knight, and D. J. Ellar, “N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis,” Proceedings of the Royal Society B, vol. 245, no. 1312, pp. 31–35, 1991.
[23]  B. H. Knowles, “Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins,” Advances in Insect Physiology, vol. 24, pp. 275–308, 1994.
[24]  S. L. Slatin, C. K. Abrams, and L. English, “Delta-endotoxins form cation-selective channels in planar lipid bilayers,” Biochemical and Biophysical Research Communications, vol. 169, no. 2, pp. 765–772, 1990.
[25]  A. Bravo, K. Hendrickx, S. Jansens, and M. Peferoen, “Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran mudgut membranes,” Journal of Invertebrate Pathology, vol. 60, no. 3, pp. 247–253, 1992.
[26]  P. Denolf, S. Jansens, M. Peferoen, D. Degheele, and J. van Rie, “Two different Bacillus thuringiensis delta-endotoxin receptors in the midgut brush border membrane of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae),” Applied and Environmental Microbiology, vol. 59, no. 6, pp. 1828–1837, 1993.
[27]  A. Bravo, S. Jansens, and M. Peferoen, “Immunocytochemical localization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects,” Journal of Invertebrate Pathology, vol. 60, no. 3, pp. 237–246, 1992.
[28]  A. Boets, S. Jansens, P. Denolf, M. Peferoen, D. Degheele, and J. van Rie, “Sequential observations of toxin distribution and histopathological effects of CryIIIA in the gut of intoxicated Leptinotarsa decemlineata larvae,” in Proceedings of the 27th Annual Meeting of the Society for Invertebrate Pathology, p. 377, 1994.
[29]  S. F. Garczynski, J. W. Crim, and M. J. Adang, “Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensisδ-endotoxin by protein blot analysis,” Applied and Environmental Microbiology, vol. 57, no. 10, pp. 2816–2820, 1991.
[30]  P. J. K. Knight, N. Crickmore, and D. J. Ellar, “The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N,” Molecular Microbiology, vol. 11, no. 3, pp. 429–436, 1994.
[31]  S. S. Gill, E. A. Cowles, and V. Francis, “Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens,” Journal of Biological Chemistry, vol. 270, no. 45, pp. 27277–27282, 1995.
[32]  M. K. Lee, T. H. You, B. A. Young, J. A. Cotrill, A. P. Valaitis, and D. H. Dean, “Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin,” Applied and Environmental Microbiology, vol. 62, no. 8, pp. 2845–2849, 1996.
[33]  S. Sangadala, F. S. Walters, L. H. English, and M. J. Adang, “A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and 86Rb+-K+ efflux in vitro,” Journal of Biological Chemistry, vol. 269, no. 13, pp. 10088–10092, 1994.
[34]  A. P. Valaitis, M.-K. Lee, F. Rajamohan, and D. H. Dean, “Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) delta-endotoxin of Bacillus thuringiensis,” Insect Biochemistry and Molecular Biology, vol. 25, no. 10, pp. 1143–1151, 1995.
[35]  K. Yaoi, T. Kadotani, H. Kuwana et al., “Aminopeptidase N from Bombyx mori as a candidate for the receptor of Bacillus thuringiensis Cry1Aa toxin,” European Journal of Biochemistry, vol. 246, no. 3, pp. 652–657, 1997.
[36]  G. Hua, L. Masson, J. L. Jurat-Fuentes, G. Schwab, and M. J. Adang, “Binding analyses of Bacillus thuringiensis Cry δ-endotoxins using brush border membrane vesicles of Ostrinia nubilalis,” Applied and Environmental Microbiology, vol. 67, no. 2, pp. 872–879, 2001.
[37]  R. K. Vadlamudi, E. Weber, I. Ji, T. H. Ji, and L. A. Bulla Jr., “Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis,” Journal of Biological Chemistry, vol. 270, no. 10, pp. 5490–5494, 1995.
[38]  O. Ravoahangimalala, J.-F. Charles, and J. Schoeller-Raccaud, “Immunological localization of Bacillus thuringiensis serovar israelensis toxins in midgut cells of intoxicated Anopheles gambiae larvae (Diptera: Culicidae),” Research in Microbiology, vol. 144, no. 4, pp. 271–278, 1993.
[39]  J. van Rie, S. Jansens, H. Hofte, D. Degheele, and H. van Mellaert, “Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins,” Applied and Environmental Microbiology, vol. 56, no. 5, pp. 1378–1385, 1990.
[40]  M. Wolfersberger, “Specificity and mode of action of Bacillus thuringiensisinsecticidal crystal proteins toxic to lepidopteran larvae: recent insights from studies utilizing midgut brush border membrane vesicles,” in Proceedings of the 5th International Colloquium on Invertebrate Pathology and Microbial Control, pp. 278–282, Adelaide, Australia, August 1990.
[41]  Y. Liang, S. S. Patel, and D. H. Dean, “Irreversible binding kinetics of Bacillus thuringiensis CryIA δ- endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity,” Journal of Biological Chemistry, vol. 270, no. 42, pp. 24719–24724, 1995.
[42]  J. Ferre, M. D. Real, J. van Rie, S. Jansens, and M. Peferoen, “Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 12, pp. 5119–5123, 1991.
[43]  J. Ferre, B. Escriche, Y. Bel, and J. van Rie, “Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins,” FEMS Microbiology Letters, vol. 132, no. 1-2, pp. 1–7, 1995.
[44]  L. Masson, Y.-J. Lu, A. Mazza, R. Brousseau, and M. J. Adang, “The CryIA(c) receptor purified from Manduca sexta displays multiple specificities,” Journal of Biological Chemistry, vol. 270, no. 35, pp. 20309–20315, 1995.
[45]  A. R. Panizzi and B. S. Corrêa-Ferreira, “Dynamics in the insect fauna adaptation to soybean in the tropics,” Trends Entomology, vol. 1, pp. 71–88, 1997.
[46]  S. M. Levy, A. M. F. Falleiros, E. A. Gregório, N. R. Arrebola, and L. A. Toledo, “The larval midgut of anticarsia gemmatalis (Hübner) (lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells,” Brazilian Journal of Biology, vol. 64, no. 3B, pp. 633–638, 2004.
[47]  D. Gallo, O. Nakano, S. S. Neto et al., Entomologia agrícola, Funda??o de Estudos Agrários Luiz de Queiroz, Piracicaba, Brazil, 2002.
[48]  L. Morales, F. Moscardi, J. G. Kastelic, D. R. Sosa-Gómez, F. E. Paro, and I. L. Soldório, “Suscetibilidade de Anticarsia gemmatalis Hübner e Chrysodeixis includes (Walker) (Lepidoptera: Noctuidae), a Bacillus thuringiensis (Berliner),” Anais da Sociedade Entomológica do Brasil, vol. 24, pp. 593–598, 1995.
[49]  F. Moscardi and Carvalho, “Consumo e utiliza??o de soja por Anticarsia gemmatalis Hüb. (Lepidoptera: Noctuidae) infectada, em diferentes estádios larvais, por seu vírus de poliedrose nuclear,” Anais da Sociedade Entomológica do Brasil, vol. 22, pp. 267–280, 1993.
[50]  J. Mahillon and J. Delcour, “A convenient procedure for the preparation of highly purified parasporal crystals of Bacillus thuringiensis,” Journal of Microbiological Methods, vol. 3, no. 2, pp. 69–76, 1984.
[51]  U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970.
[52]  M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976.
[53]  G. L. Greene, N. C. Leppla, and W. A. Dickerson, “Velvetbean caterpillar: a rearing procedure and artificial medium,” Journal of Economic Entomology, vol. 69, no. 4, pp. 487–488, 1976.
[54]  M. L. Haddad, “Utiliza??o do Polo-PC para análise de Probit,” in Controle Microbiano de Insetos, S. B. Alves, Ed., pp. 21–38, Funda??o de Estudos Agrários Luiz de Queiroz, Piracicaba, Brazil, 2nd edition, 1998.
[55]  E. A. Bayer and M. Wilchek, “Protein biotinylation,” Methods in Enzymology, vol. 184, pp. 138–160, 1990.
[56]  P. Denolf, S. Jansens, S. van Houdt, M. Peferoen, D. Degheele, and J. van Rie, “Biotinylation of Bacillus thuringiensis insecticidal crystal proteins,” Applied and Environmental Microbiology, vol. 59, no. 6, pp. 1821–1827, 1993.
[57]  P. Brandtzaeg, “Tissue preparation methods for immunocytochemistry,” in Techniques in Immunocytochemistry, G. Bullock and P. Petruz, Eds., pp. 49–51, Academic Press, London, UK, 1982.
[58]  L. M. Fiuza, R. Schünemann, L. M. N. Pinto, and M. H. B. Zanettini, “Two new Brazilian isolates of Bacillus thuringiensis toxic to Anticarsia gemmatalis (Lepidoptera: Noctuidae),” Brazilian Journal of Biology, vol. 72, no. 2, pp. 363–369, 2012.
[59]  V. L. Bobrowski, G. Pasquali, M. H. Bodanese-Zanettini, and L. M. Fiuza, “Detection of Cry1 genes in Bacillus thuringiensis isolates from south of Brazil and activity against Anticarsia gemmatalis (Lepidoptera: Noctuidae),” Brazilian Journal of Microbiology, vol. 32, no. 2, pp. 105–109, 2001.
[60]  C. N. Stewart Jr., M. J. Adang, J. N. All et al., “Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene,” Plant Physiology, vol. 112, no. 1, pp. 121–129, 1996.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133