In this study, we reported thirty-nine endophytic fungi identified as Colletotrichum spp. associated with Brazilian pepper tree or aroeira (Schinus terebinthifolius Raddi. Anacardiaceae) in Paraná state, Brazil. These endophytes were identified by morphological and molecular methods, using PCR taxon-specific with CaInt/ITS4, CgInt/ITS4, and Col1/ITS4 primers, which amplify specific bands in C. acutatum, C. gloeosporioides lato sensu, and Colletotrichum boninensis, respectively, and by DNA sequence analysis of the nrDNA internal transcribed spacer region (ITS1, 5.8S, ITS2). We also assayed the presence of dsRNA particles in Colletotrichum spp. isolates. Combining both morphological characters and molecular data, we identified the species C. gloeosporioides, C. boninense, and C. simmondsii. However, we found a high genetic variability intraspecific in C. gloeosporioides which suggests the existence of several other species. Bands of double-stranded RNA (dsRNA) were detected in three of thirty-nine isolates. Identity of these bands was confirmed by RNAse, DNAse, and S1 nuclease treatments for the isolates LGMF633, LGMF726, and LGMF729. This is the first study reporting these particles of dsRNA in C. gloeosporioides. 1. Introduction Potential sources of new natural products have been explored in medicine, agriculture, and industry. Endophytic fungi have been recognized as useful sources of bioactive secondary metabolites [1], especially those isolated from medicinal plants [2, 3]. Various important characteristics are currently attributed, such as the increase in resistance to stressful conditions; alteration in physiological properties; production of phytohormones, toxins, medicinal substances, immunosuppressants, antitumor agents, and compounds of biotechnological interest such as enzymes [1, 4–13]. Brazilian pepper tree also called aroeira (Schinus terebinthifolius Raddi-Anacardiaceae) is native to Argentina, Brazil, and Paraguay [14]. In Brazil, the bark leaves and fruits have been used in popular medicine due to their medicinal properties [15–18]. Actions anti-inflammatory and antiseptic for treatment of wounds, urinary, and respiratory infections are listed as medicinal properties popularly known [19]. Studies showed antimicrobial activity [15, 18, 20–24], antifungal activity [25, 26], as antioxidant [15, 27], and antitumor [18, 28]. Despite its importance, there are a few records about the endophytic community in this plant. Colletotrichum has been isolated from numerous plant species especially as symptomatic pathogens but can be found as
References
[1]
J. L. Azevedo, W. Maccheroni, J. O. Pereira, and W. L. de Araújo, “Endophytic microorganisms: a review on insect control and recent advances on tropical plants,” Electronic Journal of Biotechnology, vol. 3, no. 1, pp. 40–65, 2000.
[2]
Z. Huang, X. Cai, C. Shao et al., “Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76,” Phytochemistry, vol. 69, no. 7, pp. 1604–1608, 2008.
[3]
H. W. Zhang, Y. C. Song, and R. X. Tan, “Biology and chemistry of endophytes,” Natural Product Reports, vol. 23, no. 5, pp. 753–771, 2006.
[4]
P. A. Backman and R. A. Sikora, “Endophytes: an emerging tool for biological control,” Biological Control, vol. 46, no. 1, pp. 1–3, 2008.
[5]
G. Bills, A. Dombrowsky, F. Pelaez, and J. Polishook, “Recent and future discoveries of pharmacologically active metabolites from tropical fungi,” in Tropical Mycology: Micromycetes, vol. 2, pp. 165–194, CABI, New York, NY, USA, 2002.
[6]
L. Cai and C. D. Wu, “Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens,” Journal of Natural Products, vol. 59, no. 10, pp. 987–990, 1996.
[7]
E. Esposito and J. L. Azevedo, Fungos: Uma Introdu??o à Biologia, Bioquímica e Biotecnologia, EDUSC, Caxias do Sul, Brazil, 2004.
[8]
K. F. Rodrigues, M. Hesse, and C. Werner, “Antimicrobial activities of secondary metabolites produced by endophytic fungi from Spondias mombin,” Journal of Basic Microbiology, vol. 40, pp. 261–267, 2000.
[9]
D. G. S. Soares, C. B. de Oliveira, C. Leal, et al., “Susceptibilidade in vitro de bactérias bucais a tinturas de fitoterápicos,” Revista Odonto Ciência, vol. 21, no. 53, pp. 232–238, 2006.
[10]
G. Strobel, B. Daisy, U. Castillo, and J. Harper, “Natural products from endophytic microorganisms,” Journal of Natural Products, vol. 67, no. 2, pp. 257–268, 2004.
[11]
M. V. Tejesvi, K. R. Kini, H. S. Prakash, V. Subbiah, and H. S. Shetty, “Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants,” Fungal Diversity, vol. 24, pp. 37–54, 2007.
[12]
E. Velázquez, H. A. Tournier, P. Mordujovich de Buschiazzo, G. Saavedra, and G. R. Schinella, “Antioxidant activity of Paraguayan plant extracts,” Fitoterapia, vol. 74, no. 1-2, pp. 91–97, 2003.
[13]
H. Yu, L. Zhang, L. Li et al., “Recent developments and future prospects of antimicrobial metabolites produced by endophytes,” Microbiological Research, vol. 165, no. 6, pp. 437–449, 2010.
[14]
L. Mytinger and G. B. Williamson, “The invasion of Schinus into saline communities of Everglades National Park,” Florida Scientist, vol. 50, pp. 7–12, 1987.
[15]
C. H. Degáspari, N. Waszczynskyj, and M. R. M Pardo, “Atividade antimicrobiana de Schinus terebentifolius Raddi,” Ciência e Agrotecnologia, vol. 29, no. 3, pp. 617–622, 2005.
[16]
M. J. M. Guerra, M. L. Barreiro, Z. M. Rodriguez, and Y. Rubalcaba, “Actividad antimicrobiana de um extracto fluido al 80% de Schinus terebenthifolius Raddi (copal),” Revista Cubana de Plantas Medicinales, vol. 5, no. 1, pp. 23–25, 2000.
[17]
H. Lorenzi, árvores Brasileiras—Manual de Identifica??o e Cultivo de Plantas Arbóreas Nativas do Brasil, vol. 1, Instituto Plantarum, 4th edition, 2002.
[18]
M. O. Ribas, M. H. Sousa, J. Sartoretto, et al., “Efeito da Schinus terebenthifolius Raddi sobre o processo de reparo tecidual das les?es ulceradas induzidas na mucosa bucal do rato,” Revista Odonto Ciência/PUCRS, vol. 21, no. 53, pp. 245–252, 2006.
[19]
M. R. F. de Lima, J. de Souza Luna, A. F. Dos Santos et al., “Anti-bacterial activity of some Brazilian medicinal plants,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 137–147, 2006.
[20]
I. Hoffman, L. S. Coutinho, O. J. M. Torres, et al., “Efeito do extrato hidroalcoólico da Aroeira (Schinus terebentifolius Raddi) na cicatriza??o de anastomoses col?nicas. Estudo experimental em ratos,” Acta Cirurgica Brasileira, vol. 21, no. 3, pp. 49–54, 2006.
[21]
S. Johann, M. G. Pizzolatti, C. L. Donnici, and M. A. Resende, “Atividade antifúngica de plantas utilizadas na medicina tradicional brasileira contra fungos de relevancia clínica,” Brazilian Journal of Microbiology, vol. 38, no. 4, pp. 632–637, 2007.
[22]
J. A. T. Nunes Jr., J. M. Ribas-Filho, O. Malafaia et al., “Evaluation of the hydro-alcoholic Schinus terebinthifolius Raddi (Aroeira) extract in the healing process of the alba linea in rats,” Acta Cirurgica Brasileira, vol. 21, no. 3, pp. 8–15, 2006.
[23]
J. Sukumaran and M. T. Holder, “DendroPy: a Python library for phylogenetic computing,” Bioinformatics, vol. 26, no. 12, Article ID btq228, pp. 1569–1571, 2010.
[24]
P. Talhinhas, S. Sreenivasaprasad, J. Neves-Martins, and H. Oliveira, “Genetic and morphological characterization of Colletotrichum acutatum causin anthracnose of luppins,” Phythopathology, vol. 92, pp. 986–996, 2002.
[25]
R. Fenner, A. H. Betti, L. A. Mentz, et al., “Plantas utilizadas na medicina popular brasileira com potencial atividade antifúngica,” Revista Brasileira de Ciências Farmacêuticas, vol. 42, no. 3, pp. 369–394, 2006.
[26]
D. G. S. Soares, C. B. Oliveira, C. Leal, et al., “Atividade Antibacteriana in vitro da Tintura de Aroeira (Schinus terebinthifolius) na Descontamina??o de Escovas Dentais Contaminadas pelo S. mutans,” Pesquisa Brasileira em Odontopediatria e Clínica Integrada, vol. 7, no. 3, pp. 253–257, 2007.
[27]
W. X. Zou, J. C. Meng, H. Lu et al., “Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica,” Journal of Natural Products, vol. 63, no. 11, pp. 1529–1530, 2000.
[28]
L. C. S. Queires, F. Fauvel-Lafève, S. Terry et al., “Polyphenols purified from the Brazilian aroeira plant (Schinus terebinthifolius, Raddi) induce apoptotic and autophagic cell death of DU145 cells,” Anticancer Research, vol. 26, no. 1 A, pp. 379–387, 2006.
[29]
G. Lu, P. F. Cannon, A. Reid, and C. M. Simmons, “Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana,” Mycological Research, vol. 108, no. 1, pp. 53–63, 2004.
[30]
J. Moriwaki, T. Sato, and T. Tsukiboshi, “Morphological and molecular characterization of Colletotrichum boninense sp . nov. from Japan,” Mycoscience, vol. 44, no. 1, pp. 47–53, 2003.
[31]
E. I. Rojas, S. A. Rehner, G. J. Samuels et al., “Colletotrichum gloeosporioides s.l. associated with Theobroma cacao and other plants in Panamá: multilocus phylogenies distinguish host-associated pathogens from asymptomatic endophytes,” Mycologia, vol. 102, no. 6, pp. 1318–1338, 2010.
[32]
L. Afanador-Kafuri, D. Minz, M. Maymon, and S. Freeman, “Characterization of Colletotrichum isolates from tamarillo, passiflora, and mango in Colombia and identification of a unique species from the genus,” Phytopathology, vol. 93, no. 5, pp. 579–587, 2003.
[33]
S. Freeman, T. Katan, and E. Shabi, “Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits,” Plant Disease, vol. 82, no. 6, pp. 596–605, 1998.
[34]
I. P. Ahn and Y. H. Lee, “A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola,” Molecular Plant-Microbe Interactions, vol. 14, no. 4, pp. 496–507, 2001.
[35]
B. J. E. Schulz, “Mutualistic interactions with fungal root endophytes,” in Microbial Root Endophytes, B. J. E. Schulz, C. J. C. Boyle, and T. N. Sieber, Eds., pp. 261–280, Springer, Berlin, Germany, 2006.
[36]
J. Sukumaran and M. T. Holder, “SumTrees: summarization of split support on phylogenetic trees,” Version 1.0.2. Part of the DendroPy Phylogenetic Computation Library Version 3.7.0, 2010, http://packages.python.org/DendroPy/.
[37]
N. Herrero, S. Sánchez Márquez, and I. Zabalgogeazcoa, “Mycoviruses are common among different species of endophytic fungi of grasses,” Archives of Virology, vol. 154, no. 2, pp. 327–330, 2009.
[38]
L. M. Marquez, R. S. Redman, R. J. Rodriguez, and M. J. Roossinck, “A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance,” Science, vol. 315, no. 5811, pp. 513–515, 2007.
[39]
P. R. Dalzoto, C. Glienke-Blanco, V. Kava-Cordeiro, J. Z. Ribeiro, E. W. Kitajima, and J. L. Azevedo, “Horizontal transfer and hypovirulence associated with double-stranded RNA in Beauveria bassiana,” Mycological Research, vol. 110, no. 12, pp. 1475–1481, 2006.
[40]
T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999.
[41]
M. J. Melzer and M. J. Bidochka, “Diversity of double-stranded RNA viruses within populations of entomopathogenic fungi and potential implications for fungal growth and virulence,” Mycologia, vol. 90, no. 4, pp. 586–594, 1998.
[42]
O. Petrini, “Taxonomy of endophytic fungi of aerial plant tissues,” in Microbiology of the Phyllosphere, N. J. Fokkema and J. van den Heuvel, Eds., pp. 175–187, Cambridge University Press, Cambridge, UK, 1986.
[43]
U. Raeder and P. Broda, “Rapid preparation of DNA from filamentous fungi,” Letters in Applied Microbiology, vol. 1, no. 1, pp. 17–20, 1985.
[44]
C. Glienke-Blanco, C. I. Aguilar-Vildoso, M. L. Carneiro Vieira, P. A. V. Barroso, and J. L. Azevedo, “Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants,” Genetics and Molecular Biology, vol. 25, no. 2, pp. 251–255, 2002.
[45]
J. F. White Jr. and A. C. Morrow, “Endophyte-host associations in forage grasses. XII. A fungal endophyte of Trichachne insularis belonging to Psedocercosporella,” Mycologia, vol. 82, no. 2, pp. 218–226, 1990.
[46]
P. R. Mills, S. Sreenivasaprasad, and A. E. Brown, “Detection and differentiation of Colletotrichum gloeosporioides isolates using PCR,” FEMS Microbiology Letters, vol. 98, no. 1–3, pp. 137–143, 1992.
[47]
S. A. V. Pileggi, S. F. V. Oliveira, C. E. Waculicz-Andrade, et al., “Molecular and Morphological Identification of Colletotrichum gloeosporioides and Colletotrichum boninense isolated from Maytenus ilicifolia,” Canadian Journal of Microbiology, vol. 55, pp. 1076–1088, 2009.
[48]
G. S. de Hoog and A. H. G. Gerrits van den Ende, “Molecular diagnostics of clinical strains of filamentous Basidiomycetes,” Mycoses, vol. 41, no. 5-6, pp. 183–189, 1998.
[49]
J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.
[50]
D. Zwickl, Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, Ph.D. thesis, University of Texas at Austin, Austin, Tex, USA, 2006.
[51]
J. P. Huelsenbeck and F. Ronquist, “MRBAYES: bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001.
[52]
G. Altekar, S. Dwarkadas, J. P. Huelsenbeck, and F. Ronquist, “Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference,” Bioinformatics, vol. 20, no. 3, pp. 407–415, 2004.
[53]
D. Posada, “jModeltest: phylogenetic model averaging,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1253–1256, 2008.
[54]
A. Rambaut and A. J. Drummond, “Tracer v1.5,” 2009, http://beast.bio.ed.ac.uk/Tracer.
[55]
J. A. A. Nylander, J. C. Wilgenbusch, D. L. Warren, and D. L. Swofford, “Awty (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics,” Bioinformatics, vol. 24, no. 4, pp. 581–583, 2008.
[56]
P. W. Crous, J. C. Kang, C. L. Schoch, and G. R. A. Mchau, “Phylogenetic relationships of Cylindrocladium pseudogracile and Cylindrocladium rumohrae with morphologically similar taxa, based on morphology and DNA sequences of internal transcribed spacers and β-tubulin,” Canadian Journal of Botany, vol. 77, no. 12, pp. 1813–1820, 1999.
[57]
K. D. Hyde, L. CAI, P. F. Cannon, et al., “Colletotrichum—names in current use,” Fungal Diversity, vol. 39, pp. 147–182, 2009.
[58]
R. G. Shivas and Y. P. Tan, “A taxonomic reassessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov,” Fungal Diversity, vol. 39, pp. 111–122, 2009.
[59]
M. Castro, K. Kramer, L. Valdivia, S. Ortiz, J. Benavente, and A. Castillo, “A new double-stranded RNA mycovirus from Botrytis cinerea,” FEMS Microbiology Letters, vol. 175, no. 1, pp. 95–99, 1999.
[60]
R. L. J. Howitt, R. E. Beever, M. N. Pearson, and R. L. S. Forster, “Presence of double-stranded RNA and virus-like particles in Botrytis cinerea,” Mycological Research, vol. 99, no. 12, pp. 1472–1478, 1995.
[61]
T. Papp, I. Nyilasi, C. Fekete, L. Ferenczy, and C. Vagvolgyi, “Presence of double-stranded RNA and virus-like particles in Rhizopus isolates,” Canadian Journal of Microbiology, vol. 47, no. 5, pp. 443–447, 2001.
[62]
O. Preisig, N. Moleleki, W. A. Smit, B. D. Wingfield, and M. J. Wingfield, “A noval RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua,” Journal of General Virology, vol. 81, no. 12, pp. 3107–3114, 2000.
[63]
H. L. Robinson and J. W. Deacon, “Double-stranded RNA elements in Rhizoctonia solani AG3,” Mycological Research, vol. 106, no. 1, pp. 12–22, 2002.
[64]
Z. K. Punja, “Influence of double-stranded RNAs on growth, sporulation, pathogenicity, and survival of Chalara elegans,” Canadian Journal of Botany, vol. 73, no. 7, pp. 1001–1009, 1995.
[65]
A. L. Dawe and D. L. Nuss, “Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis,” Annual Review of Genetics, vol. 35, pp. 1–29, 2001.
[66]
M. Hollings, “Mycoviruses and plant pathology,” Plant Disease, vol. 66, pp. 1106–1112, 1982.
[67]
M. N. Pearson, R. E. Beever, B. Boine, and K. Arthur, “Mycoviruses of filamentous fungi and their relevance to plant pathology,” Molecular Plant Pathology, vol. 10, no. 1, pp. 115–128, 2009.