全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization of GMAW Process Parameters Using Particle Swarm Optimization

DOI: 10.1155/2013/460651

Full-Text   Cite this paper   Add to My Lib

Abstract:

To improve the corrosion-resistant properties of carbon steel cladding process is usually used. It is a process of depositing a thick layer of corrosion resistant material-over carbon steel plate. Most of the engineering applications require high strength and corrosion resistant materials for long-term reliability and performance. By cladding, these properties can be achieved with minimum cost. The main problem faced in cladding is the selection of optimum combinations of process parameters for achieving quality clad and hence good clad bead geometry. This paper highlights an experimental study to optimize various input process parameters (welding current, welding speed, gun angle, contact tip to work distance, and pinch) to get optimum dilution in stainless steel cladding of low-carbon structural steel plates using gas metal arc welding (GMAW). Experiments were conducted based on central composite rotatable design with full-replication technique and mathematical models were developed using multiple regression method. The developed models have been checked for adequacy and significance. Using particle swarm optimization (PSO) the parameters were optimized to get minimal dilution. 1. Introduction Prevention of corrosion is a major problem in industries. Even though it cannot be eliminated completely, it can be reduced to some extent. A corrosion resistant protective layer is made over the less corrosion resistant substrate by a process called cladding. This technique is used to improve life of engineering components but also reduce their cost. This process is mainly used in industries such as chemical, textiles, nuclear, steam power plants, food processing, and petro-chemical industries [1]. Most accepted method of employed in weld cladding is GMAW. It has got the following advantages.(i)High reliability;(ii)all position capability;(iii)ease to use;(iv)low cost;(v)high productivity;(vi)suitable for both ferrous and non ferrous metals; (vii)high deposition rate;(viii)absences of fluxes;(ix)cleanliness and ease of mechanization. The mechanical strength of clad metal is highly influenced by the composition of metal but also by clad bead shape. This is an indication of bead geometry. Figure 1 shows the clad bead geometry. It mainly depends on wire feed rate, welding speed, arc voltage, and so forth. Therefore it is necessary to study the relationship between in process parameters and bead parameters to study clad bead geometry. Using mathematical models it can be achieved. Figure 1: Clad bead geometry. Percentage dilution (D) = [ B/( A+ B)] × 100. This paper

References

[1]  P. K. Palani and N. Murugan, “Prediction of delta ferrite content and effect of welding process parameters in claddings by FCAW,” Materials and Manufacturing Processes, vol. 21, no. 5, pp. 431–438, 2006.
[2]  T. Kannan and N. Murugan, “Prediction of Ferrite Number of duplex stainless steel clad metals using RSM,” Welding Journal, vol. 85, no. 91, p. 99, 2006.
[3]  N. Murugan and V. Gunaraj, “Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes,” Journal of Materials Processing Technology, vol. 168, no. 3, pp. 478–487, 2005.
[4]  I. S. Kim, K. J. Son, Y. S. Yang, and P. K. D. V. Yaragada, “Sensitivity analysis for process parameters in GMA welding processes using a factorial design method,” International Journal of Machine Tools and Manufacture, vol. 43, no. 8, pp. 763–769, 2003.
[5]  W. G. Cochran and G. M. Coxz, Experimental Design, John Wiley & Sons, New York, NY, USA, 1987.
[6]  S. Karao?lu and A. Se?gin, “Sensitivity analysis of submerged arc welding process parameters,” Journal of Materials Processing Technology, vol. 202, no. 1–3, pp. 500–507, 2008.
[7]  P. K. Ghosh, P. C. Gupta, and V. K. Goyal, “Stainless steel cladding of structural steel plate using the pulsed current GMAW process,” Welding Journal, vol. 77, no. 7, pp. 307s–314s, 1998.
[8]  V. Gunaraj and N. Murugan, “Prediction and comparison of the area of the heat-affected zone for the bead-on-plate and bead-on-joint in submerged arc welding of pipes,” Journal of Materials Processing Technology, vol. 95, no. 1–3, pp. 246–261, 1999.
[9]  D. C. Montgamery, Design and Analysis of Experiments, John Wiley & Sons, 2003.
[10]  T. Kannan and J. Yoganandh, “Effect of process parameters on clad bead geometry and its shape relationships of stainless steel claddings deposited by GMAW,” International Journal of Advanced Manufacturing Technology, vol. 47, pp. 1083–1095, 2010.
[11]  R. Poli, J. Kennedy, and T. BlackWell, “Particle swarm optimization. An Overview,” Swaran Intelligence, vol. 1, no. 1, pp. 33–57, 2007.
[12]  F. Madadi, F. Ashrafizadel, and M. Shamanian, “Optimization of pulsed TIG welding process of satellite alloy on carbon steel using RSM,” Journal of Alloys and Compounds, vol. 510, pp. 71–77, 2012.
[13]  R. Mudkerjee, S. Chakraborty, and S. Samanta, “Selection of wire electrical discharge machining process parameters using non traditional optimization algorithms,” Applied Soft Computing, vol. 12, no. 8, pp. 2506–2516, 2012.
[14]  N. Yusup, A. M. Zain, and S. Z. M. Hashim, “Evolutionary techniques in optimizing machining parameters: review of recent applications,” Expert Systems with Applications, vol. 39, no. 10, pp. 9909–9927, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133