全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sweet Corrosion Inhibition on API 5L-B Pipeline Steel

DOI: 10.5402/2012/892385

Full-Text   Cite this paper   Add to My Lib

Abstract:

Corrosion inhibition and adsorption behavior of two triazole derivatives on API 5L-B carbon steel in CO2-saturated 3.5% NaCl solutions was investigated using potentiodynamic polarization, EIS, and EFM techniques. Specimen surfaces were characterized using SEM, EDX, and XRD. Results show that the two compounds are mixed-type inhibitors and inhibition efficiency increases with increasing concentrations. Adsorption of the two compounds chemisorption and obeys Langmuir adsorption isotherm. Activation energy and thermodynamic parameters were calculated. Surface analyses confirm the formation of iron nitrides on the metal surface which supports results obtained from previous techniques. 1. Introduction Carbon dioxide which is present naturally in oil and gas wells is injected purposely into wells to enhance oil recovery. CO2 corrosion, also known as “sweet corrosion,” is one of the major problems in oil and gas industry, costing billions of dollars every year. Great efforts must be expended in corrosion control for safety, business, and environmental considerations. Sweet corrosion is caused by the presence of carbon dioxide (CO2) dissolved in water to form carbonic acid (H2CO3). Corrosion increase as the concentration of CO2, system pressure, and temperature increase. This corrosion is typically slow, localized and results in pitting attack. Pits are very difficult to detect because of their tiny size and the corrosion products that cover them. In oil and gas production and processing industries, corrosion inhibitors have always been considered the first line of defense against internal corrosion. Inorganic inhibitors, such as sodium arsenite (Na2HAsO3) and sodium ferrocyanide, were used in early days to inhibit carbon dioxide (CO2) corrosion in oil wells, but the treatment frequency and effectiveness were not satisfactory. This led to the development of many organic chemical formulations that frequently incorporated film-forming amines and their salts. In this work, the corrosion inhibition and adsorption behavior of Itraconazole and Fluconazole compounds on API 5L-B carbon steel in CO2-saturated 3.5% NaCl solutions was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy, and electrochemical frequency modulation techniques. The surfaces of the samples were characterized using SEM, EDX, and XRD techniques. The effect of temperature on the corrosion rates and inhibition process was also investigated. 2. Experimental 2.1. Materials Preparation Experiments were conducted using a conventional three-electrode 200?mL cell

References

[1]  P. C. Okafor, X. Liu, and Y. G. Zheng, “Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution,” Corrosion Science, vol. 51, no. 4, pp. 761–768, 2009.
[2]  M. Heydari and M. Javidi, “Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions,” Corrosion Science, vol. 61, pp. 148–155, 2012.
[3]  X. Liu, P. C. Okafor, and Y. G. Zheng, “The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives,” Corrosion Science, vol. 51, no. 4, pp. 744–751, 2009.
[4]  B. D. Mert, M. Erman Mert, G. Karda?, and B. Yaz?c, “Experimental and theoretical investigation of 3-amino-1, 2, 4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium,” Corrosion Science, vol. 53, no. 12, pp. 4265–4272, 2011.
[5]  B. S. Sanatkumar, J. Nayak, and A. N. Shetty, “Influence of 2-(4-chlorophenyl)-2-oxoethyl benzoate on the hydrogen evolution and corrosion inhibition of 18 Ni 250 grade weld aged maraging steel in 1.0?M sulfuric acid medium,” International Journal of Hydrogen Energy, vol. 37, pp. 9431–9442, 2012.
[6]  W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008.
[7]  S. John, K. M. Ali, and A. Joseph, “Electrochemical, surface analytical and quantum chemical studies on Schiff bases of 4-amino-4H-1,2,4-triazole-3,5-dimethanol (ATD) in corrosion protection of aluminium in 1N HNO3,” Journal of Materials Science, vol. 34, no. 6, pp. 1245–1256, 2011.
[8]  S. John, J. Joy, M. Prajila, and A. Joseph, “Electrochemical, quantum chemical, and molecular dynamics studies on the interaction of 4-amino-4H,3,5-di(methoxy)-1,2,4-triazole (ATD), BATD, and DBATD on copper metal in 1N H2SO4,” Materials and Corrosion, vol. 62, no. 11, 2011.
[9]  F. A. Ansari and M. A. Quraishi, “Inhibitive effect of some gemini surfactants as corrosion inhibitors for mild steel in acetic acid media,” Arabian Journal for Science and Engineering, vol. 36, no. 1, pp. 11–20, 2011.
[10]  F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000.
[11]  S. Muralidharan, K. L. N. Phani, S. Pitchumani, S. Ravichandran, and S. V. K. Iyer, “Polyamino-benzoquinone polymers: a new class of corrosion inhibitors for mild steel,” Journal of the Electrochemical Society, vol. 142, no. 5, pp. 1478–1483, 1995.
[12]  M. G. Hosseini, M. Ehteshamzadeh, and T. Shahrabi, “Protection of mild steel corrosion with Schiff bases in 0.5?M?H2SO4 solution,” Electrochimica Acta, vol. 52, no. 11, pp. 3680–3685, 2007.
[13]  H. Wang, X. Wang, H. Wang, L. Wang, and A. Liu, “DFT study of new bipyrazole derivatives and their potential activity as corrosion inhibitors,” Journal of Molecular Modeling, vol. 13, no. 1, pp. 147–153, 2007.
[14]  Gamry Echem Analyst Manual, 2003.
[15]  R. W. Bosch, “Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoring,” Corrosion, vol. 57, no. 1, pp. 60–70, 2001.
[16]  Y. M. Tang, Y. Chen, W. Z. Yang, Y. Liu, X. S. Yin, and J. T. Wang, “Electrochemical and theoretical studies of thienyl-substituted amino triazoles on corrosion inhibition of copper in 0.5?M?H2SO4,” Journal of Applied Electrochemistry, vol. 38, no. 11, pp. 1553–1559, 2008.
[17]  M. A. Migahed, “Electrochemical investigation of the corrosion behaviour of mild steel in 2?M?HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 48–53, 2005.
[18]  A. S. Fouda, G. Y. Elewady, and M. N. El-Haddad, “Corrosion inhibition of carbon steel in acidic solution using some azodyes,” Canadian Journal on Scientific and Industrial Research, vol. 2, no. 1, 2011.
[19]  H. Amar, A. Tounsi, A. Makayssi, A. Derja, J. Benzakour, and A. Outzourhit, “Corrosion inhibition of Armco iron by 2-mercaptobenzimidazole in sodium chloride 3% media,” Corrosion Science, vol. 49, no. 7, pp. 2936–2945, 2007.
[20]  G. Avci, “Corrosion inhibition of indole-3-acetic acid on mild steel in 0.5?M?HCl,” Colloids and Surfaces A, vol. 317, no. 1-3, pp. 730–736, 2008.
[21]  M. Abdallah, “Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution,” Corrosion Science, vol. 44, no. 4, pp. 717–728, 2002.
[22]  M. Lebrini, M. Lagrenée, M. Traisnel, L. Gengembre, H. Vezin, and F. Bentiss, “Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: electrochemical, X-ray photoelectron spectroscopy and theoretical studies,” Applied Surface Science, vol. 253, no. 23, pp. 9267–9276, 2007.
[23]  G. Moretti, F. Guidi, and G. Grion, “Tryptamine as a green iron corrosion inhibitor in 0.5?M deaerated sulphuric acid,” Corrosion Science, vol. 46, no. 2, pp. 387–403, 2004.
[24]  F. M. Donahue and K. Nobe, “Theory of organic corrosion inhibitors adsorption and linear free energy relationships,” Journal of The Electrochemical Society, vol. 112, no. 9, pp. 886–891, 1965.
[25]  E. Kamis, F. Belluci, R. M. Latanision, and E. S. H. El-Ashry, “Acid corrosion inhibition of nickel by 2-(triphenosphoranylidene) succinic anhydride,” Corrosion, vol. 47, no. 9, pp. 677–686, 1991.
[26]  O. Benali, L. Larabi, M. Traisnel, L. Gengembre, and Y. Harek, “Electrochemical, theoretical and XPS studies of 2-mercapto-1-methylimidazole adsorption on carbon steel in 1?M?HClO4,” Applied Surface Science, vol. 253, no. 14, pp. 6130–6139, 2007.
[27]  R. Solmaz, G. Karda?, M. ?ulha, B. Yazici, and M. Erbil, “Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media,” Electrochimica Acta, vol. 53, no. 20, pp. 5941–5952, 2008.
[28]  J. Aljourani, K. Raeissi, and M. A. Golozar, “Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1?M?HCl solution,” Corrosion Science, vol. 51, no. 8, pp. 1836–1843, 2009.
[29]  F. Bentiss, M. Lebrini, and M. Lagrenée, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005.
[30]  A. Y. Musa, A. B. Mohamad, A. A. H. Kadhum, M. S. Takriff, and L. T. Tien, “Synergistic effect of potassium iodide with phthalazone on the corrosion inhibition of mild steel in 1.0?M?HCl,” Corrosion Science, vol. 53, no. 11, pp. 3672–3677, 2011.
[31]  S. Ghareba and S. Omanovic, “The effect of electrolyte flow on the performance of 12-aminododecanoic acid as a carbon steel corrosion inhibitor in CO2-saturated hydrochloric acid,” Corrosion Science, vol. 53, no. 11, pp. 3805–3812, 2011.
[32]  E. A. Noor and A. H. Al-Moubaraki, “Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems,” Materials Chemistry and Physics, vol. 110, no. 1, pp. 145–154, 2008.
[33]  L. Larabi, Y. Harek, O. Benali, and S. Ghalem, “Hydrazide derivatives as corrosion inhibitors for mild steel in 1?M?HCl,” Progress in Organic Coatings, vol. 54, no. 3, pp. 256–262, 2005.
[34]  Y. P. Khodyrev, E. S. Batyeva, E. K. Badeeva, E. V. Platova, L. Tiwari, and O. G. Sinyashin, “The inhibition action of ammonium salts of O,O-dialkyldithiophosphoric acid on carbon dioxide corrosion of mild steel,” Corrosion Science, vol. 53, no. 3, pp. 976–983, 2011.
[35]  K. K. Al-Neami, A. K. Mohamed, I. M. Kenawy, and A. S. Fouda, “Inhibition of the corrosion of iron by oxygen and nitrogen containing compounds,” Monatshefte für Chemie Chemical Monthly, vol. 126, no. 4, pp. 369–376, 1995.
[36]  Y. A. Elewady, A. S. Fouda, and H. K. Zeid, “Corrosion behavior of some petroleum equipment in acidic media,” Physical Chemistry, Mansoura University. In press.
[37]  G. E. Badr, “The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media,” Corrosion Science, vol. 51, no. 11, pp. 2529–2536, 2009.
[38]  S. S. A. Rehim, O. A. Hazzazi, M. A. Amin, and K. F. Khaled, “On the corrosion inhibition of low carbon steel in concentrated sulphuric acid solutions—part I: chemical and electrochemical (AC and DC) studies,” Corrosion Science, vol. 50, no. 8, pp. 2258–2271, 2008.
[39]  L. Fragoza-Mar, O. Olivares-Xometl, M. A. Domnguez-Aguilar, E. A. Flores, P. Arellanes-Lozada, and F. Jiménez-Cruz, “Corrosion inhibitor activity of 1, 3-diketone malonates for mild steel in aqueous hydrochloric acid solution,” Corrosion Science, vol. 61, pp. 171–184, 2012.
[40]  P. S. Prevéy, “X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings,” Journal of Thermal Spray Technology, vol. 9, no. 3, pp. 369–376, 2000.
[41]  I. Bertóti, “Characterization of nitride coatings by XPS,” Surface and Coatings Technology, vol. 151-152, pp. 194–203, 2002.
[42]  J. Baranowska and S. E. Franklin, “Characterization of gas-nitrided austenitic steel with an amorphous/nanocrystalline top layer,” Wear, vol. 264, no. 9-10, pp. 899–903, 2008.
[43]  G. N. Mu, T. P. Zhao, M. Liu, and T. Gu, “Effect of metallic cations on corrosion inhibition of an anionic surfactant for mild steel,” Corrosion, vol. 52, no. 11, pp. 853–856, 1996.
[44]  A. K. Singh and M. A. Quraishi, “Inhibitive effect of diethylcarbamazine on the corrosion of mild steel in hydrochloric acid,” Corrosion Science, vol. 52, no. 4, pp. 1529–1535, 2010.
[45]  A. Popova, M. Christov, S. Raicheva, and E. Sokolova, “Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion,” Corrosion Science, vol. 46, no. 6, pp. 1333–1350, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133