A complete steady state thermodynamic differential analysis is developed for the adsorption-based refrigeration systems. The introduced thermodynamic model accurately represents the behaviour of adsorption cooling systems, based on a precise, reasonable, and clear fundamental approach. Based on the energy conservation principle, all components and processes in the system are analyzed. The dynamics of adsorption is expressed by the Dubinin-Astakhov adsorption equilibrium model. All types of energy interactions are evaluated in order to determine the theoretical performance and the operating parameters of the system. Moreover, the actual thermodynamic properties of the refrigerant are considered in developing the model. The case studied is an ice maker which uses activated carbon-methanol as the working pair. 1. Introduction The traditional vapor compression refrigeration (VCR) machines are dominating electricity consumers and their operation causes high electricity peak loads [1]. Providing cooling by using a low quality source of energy is a key solution to reduce electrical energy consumption. Low quality energy sources are those sources with low temperature and include solar thermal energy, geothermal energy, and waste heat. Recently, thermally driven cold production (TDCP) systems attract many researchers [2]. The booming progress in the TDCP technology offers a considerable number of systems as alternatives to the VCR machines. These systems include adsorption, absorption, and ejector systems. An advantage of the TDCP systems is the environmentally benign and natural refrigerants which have zero ozone depleting as well as zero global warming potentials. Moreover, the low heat source driving temperature and its wide range make TDCP systems more attractive. Adsorption cold production (ACP) systems can be powered by heat sources with temperature which is near-environmental temperatures and as low as 50°C, depending on the adsorbent-refrigerant working pair [3]. Moreover, ACP machines are suitable for working in hot and dry areas because they do not require any extra cooling equipment for high ambient temperatures. Due to the fact that ACP systems use solid absorbent, they are suitable for conditions with serious vibration, such as in fishing boats and locomotives. The most widely used working pairs are activated carbon-methanol [4, 5], activated carbon fibers-methanol [6], activated carbon-ethanol [7], activated carbon-ammonia [8], silica gel-water [9], and zeolite-water [10]. Many researchers have been interested with the study of the ACP system both
References
[1]
F. X. Diebold and R. S. Mariano, “Comparing predictive accuracy,” Journal of Business and Economic Statistics, vol. 13, pp. 253–263, 1995.
[2]
H. Z. Hassan and A. A. Mohamad, “A review on solar cold production through absorption technology,” Renewable & Sustainable Energy Reviews, vol. 16, no. 7, pp. 5331–5348, 2012.
[3]
L. W. Wang, R. Z. Wang, and R. G. Oliveira, “A review on adsorption working pairs for refrigeration,” Renewable and Sustainable Energy Reviews, vol. 13, no. 3, pp. 518–534, 2009.
[4]
H. Z. Hassan, A. Mohamad, and R. Bennacer, “Simulation of an adsorption solar cooling system,” Energy, vol. 36, no. 1, pp. 530–537, 2011.
[5]
F. Meunier and N. Douss, “Performance of adsorption heat pumps. Active carbon-methanol and zeolite-water pairs,” ASHRAE Transactions, vol. 2, pp. 267–274, 1990.
[6]
R. Z. Wang, J. P. Jia, Y. H. Zhu et al., “Study on a new solid absorption refrigeration pair: active carbon fiber—methanol,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 119, no. 3, pp. 214–218, 1997.
[7]
B. B. Saha, I. I. El-Sharkawy, A. Chakraborty, and S. Koyama, “Study on an activated carbon fiber-ethanol adsorption chiller—part II—performance evaluation,” International Journal of Refrigeration, vol. 30, no. 1, pp. 96–102, 2007.
[8]
M. Louajari, A. Mimet, and A. Ouammi, “Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon-ammonia pair,” Applied Energy, vol. 88, no. 3, pp. 690–698, 2011.
[9]
D. C. Wang and J. P. Zhang, “Design and performance prediction of an adsorption heat pump with multi-cooling tubes,” Energy Conversion and Management, vol. 50, no. 5, pp. 1157–1162, 2009.
[10]
E. E. Anyanwu and N. V. Ogueke, “Thermodynamic design procedure for solid adsorption solar refrigerator,” Renewable Energy, vol. 30, no. 1, pp. 81–96, 2005.
[11]
B. Choudhury, P. K. Chatterjee, and J. P. Sarkar, “Review paper on solar-powered air-conditioning through adsorption route,” Renewable and Sustainable Energy Reviews, vol. 14, no. 8, pp. 2189–2195, 2010.
[12]
D. C. Wang, Y. H. Li, D. Li, Y. Z. Xia, and J. P. Zhang, “A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 344–353, 2010.
[13]
O. S. Headley, A. F. Kothdiwala, and I. A. McDoom, “Charcoal-methanol adsorption refrigerator powered by a compound parabolic concentrating solar collector,” Solar Energy, vol. 53, no. 2, pp. 191–197, 1994.
[14]
M. I. González and L. R. Rodríguez, “Solar-powered adsorption chiller with CPC collection system: collector design and experimental results,” in Proceedings of ISES World Congress, vol. 1, pp. 916–920, 2007.
[15]
M. I. González and L. R. Rodríguez, “Solar powered adsorption refrigerator with CPC collection system: collector design and experimental test,” Energy Conversion and Management, vol. 48, no. 9, pp. 2587–2594, 2007.
[16]
C. Hildbrand, P. Dind, M. Pons, and F. Buchter, “A new solar powered adsorption refrigerator with high performance,” Solar Energy, vol. 77, no. 3, pp. 311–318, 2004.
[17]
M. Li, R. Z. Wang, Y. X. Xu, J. Y. Wu, and A. O. Dieng, “Experimental study on dynamic performance analysis of a flat-plate solar solid-adsorption refrigeration for ice maker,” Renewable Energy, vol. 27, no. 2, pp. 211–221, 2002.
[18]
M. Li and R. Z. Wang, “A study of the effects of collector and environment parameters on the performance of a solar powered solid adsorption refrigerator,” Renewable Energy, vol. 27, no. 3, pp. 369–382, 2002.
[19]
K. C. A. Alam, B. B. Saha, A. Akisawa, and T. Kashiwagi, “Optimization of a solar driven adsorption refrigeration system,” Energy Conversion and Management, vol. 42, no. 6, pp. 741–753, 2001.
[20]
N. V. Ogueke and E. E. Anyanwu, “Design improvements for a collector/generator/adsorber of a solid adsorption solar refrigerator,” Renewable Energy, vol. 33, no. 11, pp. 2428–2440, 2008.
[21]
A. El Fadar, A. Mimet, A. Azzabakh, M. Pérez-García, and J. Castaing, “Study of a new solar adsorption refrigerator powered by a parabolic trough collector,” Applied Thermal Engineering, vol. 29, no. 5-6, pp. 1267–1270, 2009.
[22]
J. J. Guilleminot, F. Meunier, and B. Mischler, “étude de cycles intermittents à adsorption solide pour la réfrigération solaire,” Revue de Physique Appliquée, vol. 15, no. 3, pp. 441–452, 1980.
[23]
R. E. Critoph, “Performance limitations of adsorption cycles for solar cooling,” Solar Energy, vol. 41, no. 1, pp. 21–31, 1988.
[24]
L. Luo and M. Feidt, “Thermodynamics of adsorption cycles: a theoretical study,” Heat Transfer Engineering, vol. 13, no. 4, pp. 19–31, 1992.
[25]
F. Mhiri and S. El Golli, “Etude d'un refrigerateur solaire a adsorption solide avec le couple charbon actif-methanol,” Revue Generate de Thermique, vol. 35, no. 412, pp. 269–277, 1996.
[26]
Y. Teng, R. Z. Wang, and J. Y. Wu, “Study of the fundamentals of adsorption systems,” Applied Thermal Engineering, vol. 17, no. 4, pp. 327–338, 1997.
[27]
H. Z. Hassan, A. A. Mohamad, and H. A. Al-Ansary, “Development of a continuously operating solar-driven adsorption cooling system: thermodynamic analysis and parametric study,” Applied Thermal Engineering, vol. 48, pp. 332–341, 2012.
[28]
J. Rouquerol, D. Avnir, C. W. Fairbridge et al., “Recommendations for the characterization of porous solids,” Pure and Applied Chemistry, vol. 66, pp. 1739–1758, 1994.
[29]
J. Rouqucrol, F. Rodriguez-Rcinoso, and K. S. W. Sing, “Characterization of porous solids—III. studies in surface science and catalysis,” in Proceedings of the IUPAC Symposium (COPS Ill), pp. 9–12, Marseille, France, 1993.
[30]
H. Marsh and F. Rodríguez-Reinoso, Activated Carbon, Elsevier, Boston, Mass, USA, 1st edition, 2006.
[31]
R. C. Bansal and M. Goyal, Activated Carbon Adsorption, Taylor & Francis, Bocaraton, Fla, USA, 2005.
[32]
D. D. Duong, Adsorption Analysis: Equilibria and Kinetics, Series on Chemical Engineering, vol. 2, Imperial College Press, London, UK, 1998.
[33]
D. M. Ruthven, S. Farooq, and K. S. Knaebel, Pressure Swing Adsorption, John Wiley & Sons, New York, NY, USA, 1994.
[34]
M. M. Dubinin and V. A. Astakhov, “Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents—Communication 2. General bases of the theory of adsorption of gases and vapors on zeolites,” Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, vol. 20, no. 1, pp. 8–12, 1971.
[35]
M. M. Dubinin and V. A. Astakhov, “Description of adsorption equilibria of vapors on zeolites over wide eanges of temperature and pressure,” Advances in Chemistry Series, vol. 102, pp. 69–85, 1971.
[36]
M. M. Dubinin, “Physical adsorption of gases and vapors in micropores,” Progress in Surface and Membrane Science, vol. 9, pp. 1–70, 1975.
[37]
B. B. Saha, A. Akisawa, and T. Kashiwagi, “Solar/waste heat driven two-stage adsorption chiller: the prototype,” Renewable Energy, vol. 23, no. 1, pp. 93–101, 2001.
[38]
Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, McGraw-Hill, 7th edition, 2011.
[39]
A. Bejan, Advanced Engineering Thermodynamics, John Wiley & Sons, 3rd edition, 2006.
[40]
K. M. de Reuck, Methanol, International Thermodynamic Tables of the Uid State, vol. 12, Blackwell Science, 1993.