全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermal Transport across Solid Interfaces with Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance

DOI: 10.1155/2013/682586

Full-Text   Cite this paper   Add to My Lib

Abstract:

The efficiency in modern technologies and green energy solutions has boiled down to a thermal engineering problem on the nanoscale. Due to the magnitudes of the thermal mean free paths approaching or overpassing typical length scales in nanomaterials (i.e., materials with length scales less than one micrometer), the thermal transport across interfaces can dictate the overall thermal resistance in nanosystems. However, the fundamental mechanisms driving these electron and phonon interactions at nanoscale interfaces are difficult to predict and control since the thermal boundary conductance across interfaces is intimately related to the characteristics of the interface (structure, bonding, geometry, etc.) in addition to the fundamental atomistic properties of the materials comprising the interface itself. In this paper, I review the recent experimental progress in understanding the interplay between interfacial properties on the atomic scale and thermal transport across solid interfaces. I focus this discussion specifically on the role of interfacial nanoscale “imperfections,” such as surface roughness, compositional disorder, atomic dislocations, or interfacial bonding. Each type of interfacial imperfection leads to different scattering mechanisms that can be used to control the thermal boundary conductance. This offers a unique avenue for controlling scattering and thermal transport in nanotechnology. 1. Introduction As the world’s population and power demands increase, our technological solutions continue to rely on power-hungry applications. The shear population increase in the world along with skyrocketing electricity, power, and transportation needs in emerging markets has led to necessary minimum levels of energy for sustainable growth and livelihood of human kind. The trends in energy use are marked by our society’s continued advancement of technology, communication, transportation, and quality of life. For example, in 2010, the United States used an estimated 28.7 trillion kW-h of energy [1]. These massive energy demands both in the USA and abroad are a necessary requirement for continued capabilities and qualities of life that have been made possible with the advancement of technologies. For example, increased computing needs (internet, cloud computing, and wireless communications), although more energy efficient in the recent past, have led to an increase in data center energy usage by roughly a factor of six over the past decade [2]; although technologies have become more energy efficient, due to the shear increase in the numbers of users and

References

[1]  Lawrence Livermore National Laboratory, Livermore, Calif, USA 94550, LLNL Energy Flow Chart, https://flowcharts.llnl.gov/.
[2]  “EPA report on clean energy and air emissions [online],” http://www.epa.gov/cleanenergy/energy-and-you/affect/air-emissions.html.
[3]  G. E. Moore, “Cramming more components onto integrated circuits,” Electronics Magazine, vol. 38, p. 4, 1965.
[4]  E. Pop, “Energy dissipation and transport in nanoscale devices,” Nano Research, vol. 3, no. 3, pp. 147–169, 2010.
[5]  D. G. Cahill, W. K. Ford, K. E. Goodson et al., “Nanoscale thermal transport,” Journal of Applied Physics, vol. 93, no. 2, pp. 793–818, 2003.
[6]  T. Hendricks and W. T. Choate, “Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery,” Tech. Rep., Pacific Northwest National Laboratory and BCS, 2006.
[7]  K. Yazawa and A. Shakouri, “Cost-efficiency trade-off and the design of thermoelectric power generators,” Environmental Science and Technology, vol. 45, pp. 7548–7553, 2011.
[8]  M. S. Dresselhaus, G. Dresselhaus, X. Sun et al., “The promise of low-dimensional thermoelectric materials,” Microscale Thermophysical Engineering, vol. 3, no. 2, pp. 89–100, 1999.
[9]  B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Progress in Photovoltaics, vol. 19, pp. 631–639, 2011.
[10]  T. Kietzke, “Recent advances in organic solar cells,” Advances in OptoElectronics, vol. 2007, Article ID 40285, 15 pages, 2007.
[11]  A. N. Smith and J. P. Calame, “Impact of thin film thermophysical properties on thermal management of wide bandgap solid-state transistors,” International Journal of Thermophysics, vol. 25, no. 2, pp. 409–422, 2004.
[12]  G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials, vol. 7, no. 2, pp. 105–114, 2008.
[13]  B. Poudel, Q. Hao, Y. Ma et al., “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, vol. 320, no. 5876, pp. 634–638, 2008.
[14]  A. I. Hochbaum, R. Chen, R. D. Delgado et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp. 163–167, 2008.
[15]  A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature, vol. 451, no. 7175, pp. 168–171, 2008.
[16]  G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, New York, NY, USA, 2005.
[17]  E. T. Swartz and R. O. Pohl, “Thermal boundary resistance,” Reviews of Modern Physics, vol. 61, no. 3, pp. 605–668, 1989.
[18]  P. L. Kapitza, “The study of heat transfer in Helium II,” Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, p. 1, 1941.
[19]  P. E. Hopkins, J. C. Duda, C. W. Petz, and J. A. Floro, “Controlling thermal conductance through quantum dot roughening at interfaces,” Physical Review B, vol. 84, no. 3, Article ID 035438, 7 pages, 2011.
[20]  P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, “Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces,” Physical Review B, vol. 82, no. 8, Article ID 085307, 5 pages, 2010.
[21]  J. C. Duda and P. E. Hopkins, “Systematically controlling Kapitza conductance via chemical etching,” Applied Physics Letters, vol. 100, no. 11, Article ID 111602, 4 pages, 2012.
[22]  P. E. Hopkins, P. M. Norris, R. J. Stevens, T. E. Beechem, and S. Graham, “Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface,” Journal of Heat Transfer, vol. 130, no. 6, Article ID 062401, 10 pages, 2008.
[23]  P. E. Hopkins, J. C. Duda, S. P. Clark et al., “Effect of dislocation density on thermal boundary conductance across GaSb/GaAs interfaces,” Applied Physics Letters, vol. 98, no. 16, Article ID 161913, 3 pages, 2011.
[24]  P. E. Hopkins, M. Baraket, E. V. Barnat et al., “Manipulating thermal conductance at metal-graphene contacts via chemical functionalization,” Nano Letters, vol. 12, pp. 590–595, 2012.
[25]  D. G. Cahill, K. Goodson, and A. Majumdar, “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” Journal of Heat Transfer, vol. 124, no. 2, pp. 223–241, 2002.
[26]  D. G. Cahill, “Extremes of heat conduction? Pushing the boundaries of the thermal conductivity of materials,” MRS Bulletin, vol. 37, pp. 855–863, 2012.
[27]  R. B. Wilson and D. G. Cahill, “Experimental validation of the interfacial form of the wiedemann-franz law,” Physical Review Letters, vol. 108, Article ID 255901, 5 pages, 2012.
[28]  B. C. Gundrum, D. G. Cahill, and R. S. Averback, “Thermal conductance of metal-metal interfaces,” Physical Review B, vol. 72, no. 24, 5 pages, 2005.
[29]  R. M. Costescu, M. A. Wall, and D. G. Cahill, “Thermal conductance of epitaxial interfaces,” Physical Review B, vol. 67, no. 5, Article ID 054302, 5 pages, 2003.
[30]  H. K. Lyeo and D. G. Cahill, “Thermal conductance of interfaces between highly dissimilar materials,” Physical Review B, vol. 73, no. 14, Article ID 144301, 6 pages, 2006.
[31]  D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3ω method,” Review of Scientific Instruments, vol. 61, no. 2, article 802, 7 pages, 1990.
[32]  Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, “Thermal conductivity of heavily doped low-pressure chemical vapor deposited polycrystalline silicon films,” Journal of Applied Physics, vol. 63, no. 5, article 1442, 6 pages, 1988.
[33]  L. M. Phinney, E. S. Piekos, and J. D. Kuppers, “Bond pad effects on steady state thermal conductivity measurement using suspended micromachined test structures,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE '07), vol. 41349, Seattle, Wash, USA, 2007.
[34]  S. Uma, A. D. McConnell, M. Asheghi, K. Kurabayashi, and K. E. Goodson, “Temperature-dependent thermal conductivity of undoped polycrystalline silicon layers,” International Journal of Thermophysics, vol. 22, no. 2, pp. 605–616, 2001.
[35]  A. D. McConnell, S. Uma, and K. E. Goodson, “Thermal conductivity of doped polysilicon layers,” Journal of Microelectromechanical Systems, vol. 10, no. 3, pp. 360–369, 2001.
[36]  D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Applied Physics Letters, vol. 83, no. 14, article 2934, 3 pages, 2003.
[37]  Z. Chen, W. Jang, W. Bao, C. N. Lau, and C. Dames, “Thermal contact resistance between graphene and silicon dioxide,” Applied Physics Letters, vol. 95, no. 16, Article ID 161910, 3 pages, 2009.
[38]  L. Lu, W. Yi, and D. L. Zhang, “3 ω method for specific heat and thermal conductivity measurements,” Review of Scientific Instruments, vol. 72, no. 7, pp. 2996–3003, 2001.
[39]  T. Tong and A. Majumdar, “Reexamining the 3-omega technique for thin film thermal characterization,” Review of Scientific Instruments, vol. 77, no. 10, Article ID 104902, 9 pages, 2006.
[40]  M. L. Bauer, C. M. Bauer, M. C. Fish et al., “Thin-film aerogel thermal conductivity measurements via 3ω,” Journal of Non-Crystalline Solids, vol. 357, no. 15, pp. 2960–2965, 2011.
[41]  B. W. Olson, S. Graham, and K. Chen, “A practical extension of the 3ω method to multilayer structures,” Review of Scientific Instruments, vol. 76, no. 5, Article ID 053901, 7 pages, 2005.
[42]  P. E. Hopkins and L. M. Phinney, “Thermal conductivity measurements on polycrystalline silicon microbridges using the 3ω technique,” Journal of Heat Transfer, vol. 131, no. 4, Article ID 043201, 8 pages, 2009.
[43]  J. H. Seol, I. Jo, A. L. Moore et al., “Two-dimensional phonon transport in supported graphene,” Science, vol. 328, no. 5975, pp. 213–216, 2010.
[44]  L. Shi, D. Li, C. Yu et al., “Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device,” Journal of Heat Transfer, vol. 125, no. 5, pp. 881–888, 2003.
[45]  H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, New York, NY, US, 2nd edition, 1959.
[46]  H. W. Deem and W. D. Wood, “Flash thermal-diffusivity measurements using a laser,” Review of Scientific Instruments, vol. 33, no. 10, pp. 1107–1109, 1962.
[47]  J. Guo, X. Wang, and T. Wang, “Thermal characterization of microscale conductive and nonconductive wires using transient electrothermal technique,” Journal of Applied Physics, vol. 101, no. 6, Article ID 063537, 7 pages, 2007.
[48]  C. A. Paddock and G. L. Eesley, “Transient thermoreflectance from thin metal films,” Journal of Applied Physics, vol. 60, no. 1, pp. 285–290, 1986.
[49]  G. L. Eesley, “Observation of nonequilibrium electron heating in copper,” Physical Review Letters, vol. 51, no. 23, pp. 2140–2143, 1983.
[50]  J. H. Weaver, D. W. Lynch, C. H. Culp, and R. Rosei, “Thermoreflectance of V, Nb, and paramagnetic Cr,” Physical Review B, vol. 14, no. 2, pp. 459–463, 1976.
[51]  E. Colavita, A. Franciosi, D. W. Lynch, G. Paolucci, and R. Rosei, “Thermoreflectance investigation of the antiferromagnetic and paramagnetic phases of Cr,” Physical Review B, vol. 27, no. 3, pp. 1653–1663, 1983.
[52]  E. Colavita, A. Franciosi, C. Mariani, and R. Rosei, “Thermoreflectance test of W, Mo, and paramagnetic Cr band structures,” Physical Review B, vol. 27, no. 8, pp. 4684–4693, 1983.
[53]  D. W. Lynch, R. Rosei, and J. H. Weaver, “Infrared and visible optical properties of single crystal Ni at 4K,” Solid State Communications, vol. 9, no. 24, pp. 2195–2199, 1971.
[54]  R. Rosei and D. W. Lynch, “Thermomodulation spectra of Al, Au, and Cu,” Physical Review B, vol. 5, no. 10, pp. 3883–3894, 1972.
[55]  R. Rosei, C. H. Culp, and J. H. Weaver, “Temperature modulation of the optical transitions involving the fermi surface in Ag: experimental,” Physical Review B, vol. 10, no. 2, pp. 484–489, 1974.
[56]  R. Rosei, “Temperature modulation of the optical transitions involving the fermi surface in Ag: theory,” Physical Review B, vol. 10, no. 2, pp. 474–483, 1974.
[57]  J. L. Hostetler, A. N. Smith, and P. M. Norris, “Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics,” Microscale Thermophysical Engineering, vol. 1, no. 3, pp. 237–244, 1997.
[58]  W. P. Hsieh and D. G. Cahill, “Ta and Au(Pd) alloy metal film transducers for time-domain thermoreflectance at high pressures,” Journal of Applied Physics, vol. 109, no. 11, Article ID 113520, 4 pages, 2011.
[59]  Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “Thermoreflectance of metal transducers for time-domain thermoreflectance,” Journal of Applied Physics, vol. 108, no. 4, Article ID 043507, 4 pages, 2010.
[60]  P. E. Hopkins, “Effects of electron-boundary scattering on changes in thermoreflectance in thin metal films undergoing intraband excitations,” Journal of Applied Physics, vol. 105, no. 9, Article ID 093517, 6 pages, 2009.
[61]  G. L. Eesley, “Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses,” Physical Review B, vol. 33, no. 4, pp. 2144–2151, 1986.
[62]  P. M. Norris, A. P. Caffrey, R. J. Stevens, J. M. Klopf, J. T. McLeskey, and A. N. Smith, “Femtosecond pump-probe nondestructive examination of materials (invited),” Review of Scientific Instruments, vol. 74, no. 1, pp. 400–406, 2003.
[63]  M. N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K. E. Goodson, “Thermal characterization of Bi2Te3/Sb2Te3 superlattices,” Journal of Applied Physics, vol. 90, no. 2, pp. 763–767, 2001.
[64]  P. M. Norris and P. E. Hopkins, “Examining interfacial diffuse phonon scattering through transient thermoreflectance measurements of thermal boundary conductance,” Journal of Heat Transfer, vol. 131, no. 4, Article ID 043207, 11 pages, 2009.
[65]  A. J. Schmidt, X. Chen, and G. Chen, “Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance,” Review of Scientific Instruments, vol. 79, no. 11, Article ID 114902, 9 pages, 2008.
[66]  P. E. Hopkins, J. R. Serrano, L. M. Phinney, S. P. Kearney, T. W. Grasser, and C. Thomas Harris, “Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating,” Journal of Heat Transfer, vol. 132, no. 8, Article ID 081302, 10 pages, 2010.
[67]  P. E. Hopkins, B. Kaehr, L. M. Phinney et al., “Measuring the thermal conductivity of porous, transparent SiO2 films with time domain thermoreflectance,” Journal of Heat Transfer, vol. 133, no. 6, Article ID 061601, 8 pages, 2011.
[68]  Y. K. Koh, S. L. Singer, W. Kim et al., “Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors,” Journal of Applied Physics, vol. 105, no. 5, Article ID 054303, 7 pages, 2009.
[69]  D. G. Cahill, “Analysis of heat flow in layered structures for time-domain thermoreflectance,” Review of Scientific Instruments, vol. 75, no. 12, pp. 5119–5122, 2004.
[70]  S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Soviet Physics, vol. 39, pp. 375–377, 1974.
[71]  P. E. Hopkins, J. M. Klopf, and P. M. Norris, “Influence of interband transitions on electron-phonon coupling measurements in Ni films,” Applied Optics, vol. 46, no. 11, pp. 2076–2083, 2007.
[72]  P. E. Hopkins, L. M. Phinney, and J. R. Serrano, “Re-examining electron-fermi relaxation in gold films with a nonlinear thermoreflectance model,” Journal of Heat Transfer, vol. 133, no. 4, Article ID 044505, 4 pages, 2011.
[73]  P. E. Hopkins, J. L. Kassebaum, and P. M. Norris, “Effects of electron scattering at metal-nonmetal interfaces on electron-phonon equilibration in gold films,” Journal of Applied Physics, vol. 105, no. 2, Article ID 023710, 8 pages, 2009.
[74]  P. E. Hopkins and P. M. Norris, “Substrate influence in electron-phonon coupling measurements in thin Au films,” Applied Surface Science, vol. 253, no. 15, pp. 6289–6294, 2007.
[75]  P. E. Hopkins, “Influence of inter- and intraband transitions to electron temperature decay in noble metals after short-pulsed laser heating,” Journal of Heat Transfer, vol. 132, no. 12, Article ID 122402, 6 pages, 2010.
[76]  P. E. Hopkins, “Contributions of inter- and intraband excitations to electron heat capacity and electron-phonon coupling in noble metals,” Journal of Heat Transfer, vol. 132, no. 1, Article ID 014504, 4 pages, 2010.
[77]  J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. J?hnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chemical Physics, vol. 251, no. 1–3, pp. 237–258, 2000.
[78]  T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” Journal of Heat Transfer, vol. 115, no. 4, article 835, 7 pages, 1993.
[79]  T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” Journal of Heat Transfer, vol. 115, no. 4, article 842, 6 pages, 1993.
[80]  A. Caffrey, P. Hopkins, J. Klopf, and P. Norris, “Thin film non-noble transition metal thermophysical properties,” Nanoscale and Microscale Thermophysical Engineering, vol. 9, no. 4, pp. 365–377, 2005.
[81]  A. J. Schmidt, R. Cheaito, and M. Chiesa, “A frequency-domain thermoreflectance method for the characterization of thermal properties,” Review of Scientific Instruments, vol. 80, no. 9, Article ID 094901, 6 pages, 2009.
[82]  H. S. Carslaw and J. C. Jaeger, “Steady periodic temperature in composite slabs,” in Conduction of Heat in Solids, pp. 109–112, Oxford University Press, New York, NY, USA, 2nd edition, 2003.
[83]  A. Feldman, “Algorithm for solutions of the thermal diffusion equation in a stratified medium with a modulated heating source,” High Temperatures, vol. 31, no. 3, pp. 293–296, 1999.
[84]  A. Schmidt, M. Chiesa, X. Chen, and G. Chen, “An optical pump-probe technique for measuring the thermal conductivity of liquids,” Review of Scientific Instruments, vol. 79, no. 6, Article ID 064902, 5 pages, 2008.
[85]  D. G. Cahill and F. Watanabe, “Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K,” Physical Review B, vol. 70, no. 23, Article ID 235322, 3 pages, 2004.
[86]  F. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, USA, 4th edition, 1996.
[87]  D. R. Lide, CRC Handbook for Chemistry and Physics, Taylor & Francis, Boca Raton, Fla, USA, 89th edition, 2008.
[88]  Y. K. Koh and D. G. Cahill, “Frequency dependence of the thermal conductivity of semiconductor alloys,” Physical Review B, vol. 76, no. 7, Article ID 075207, 5 pages, 2007.
[89]  A. J. Minnich, J. A. Johnson, A. J. Schmidt et al., “Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Physical Review Letters, vol. 107, no. 9, Article ID 095901, 4 pages, 2011.
[90]  R. J. Stevens, L. V. Zhigilei, and P. M. Norris, “Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: nonequilibrium molecular dynamics simulations,” International Journal of Heat and Mass Transfer, vol. 50, no. 19-20, pp. 3977–3989, 2007.
[91]  J. C. Duda, T. S. English, E. S. Piekos, T. E. Beechem, T. W. Kenny, and P. E. Hopkins, “Bidirectionally tuning Kapitza conductance through the inclusion of substitutional impurities,” Journal of Applied Physics, vol. 112, no. 7, Article ID 073519, p. 5, 2012.
[92]  Z. Y. Ong and E. Pop, “Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2,” Journal of Applied Physics, vol. 108, no. 10, Article ID 103502, 8 pages, 2010.
[93]  Z. Y. Ong and E. Pop, “Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2,” Physical Review B, vol. 81, no. 15, Article ID 155408, 7 pages, 2010.
[94]  E. S. Landry and A. J. H. McGaughey, “Effect of interfacial species mixing on phonon transport in semiconductor superlattices,” Physical Review B, vol. 79, no. 7, Article ID 075316, 8 pages, 2009.
[95]  E. S. Landry and A. J. H. McGaughey, “Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations,” Physical Review B, vol. 80, no. 16, Article ID 165304, 11 pages, 2009.
[96]  Z. Huang, J. Y. Murthy, and T. S. Fisher, “Modeling of polarization-specific phonon transmission through interfaces,” Journal of Heat Transfer, vol. 133, Article ID 114502, 3 pages, 2011.
[97]  W. Zhang, T. S. Fisher, and N. Mingo, “Simulation of interfacial phonon transport in Si-Ge heterostructures using an atomistic green's function method,” Journal of Heat Transfer, vol. 129, no. 4, pp. 483–491, 2007.
[98]  P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, “Extracting phonon thermal conductance across atomic junctions: nonequilibrium green's function approach compared to semiclassical methods,” Journal of Applied Physics, vol. 106, no. 6, Article ID 063503, 10 pages, 2009.
[99]  N. Mingo, in Thermal Nanosystems and Nanomaterials, S. Volz, Ed., vol. 118 of Topic in Applied Physics, Springer, Berlin, Germany, 2009.
[100]  W. Zhang, T. S. Fisher, and N. Mingo, “The atomistic Green's function method: an efficient simulation approach for nanoscale phonon transport,” Numerical Heat Transfer B, vol. 51, no. 4, pp. 333–349, 2007.
[101]  G. Laufer, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge, UK, 1996.
[102]  W. A. Little, “The transport of heat between dissimilar solids at low temperatures,” Canadian Journal of Physics, vol. 37, no. 3, pp. 334–349, 1959.
[103]  I. M. Khalatnikov and I. N. Adamenko, “Theory of the Kapitza temperature discontinuity at solid body-liquid helium boundary,” Soviet Physics, vol. 36, p. 391, 1973.
[104]  J. C. Duda, P. E. Hopkins, J. L. Smoyer et al., “On the assumption of detailed balance in prediction of diffusive transmission probability during interfacial transport,” Nanoscale and Microscale Thermophysical Engineering, vol. 14, no. 1, pp. 21–33, 2010.
[105]  E. T. Swartz and R. O. Pohl, “Thermal resistance at interfaces,” Applied Physics Letters, vol. 51, no. 26, pp. 2200–2202, 1987.
[106]  J. C. Duda, T. E. Beechem, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, “Role of dispersion on phononic thermal boundary conductance,” Journal of Applied Physics, vol. 108, no. 7, Article ID 073515, 10 pages, 2010.
[107]  P. Reddy, K. Castelino, and A. Majumdar, “Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion,” Applied Physics Letters, vol. 87, no. 21, Article ID 211908, pp. 1–3, 2005.
[108]  P. E. Hopkins, T. E. Beechem, J. C. Duda et al., “Influence of anisotropy on thermal boundary conductance at solid interfaces,” Physical Review B, vol. 84, no. 12, Article ID 125408, 7 pages, 2011.
[109]  R. S. Prasher, “Thermal boundary resistance and thermal conductivity of multiwalled carbon nanotubes,” Physical Review B, vol. 77, no. 7, Article ID 075424, 11 pages, 2008.
[110]  J. C. Duda, J. L. Smoyer, P. M. Norris, and P. E. Hopkins, “Extension of the diffuse mismatch model for thermal boundary conductance between isotropic and anisotropic materials,” Applied Physics Letters, vol. 95, no. 3, Article ID 031912, 3 pages, 2009.
[111]  W. G. Vincenti and C. H. Kruger, Introduction to Physical Gas Dynamics, Krieger Publishing Company, Malabar, Fla, USA, 2002.
[112]  P. E. Hopkins, “Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces,” Journal of Applied Physics, vol. 106, no. 1, Article ID 013528, 9 pages, 2009.
[113]  P. E. Hopkins, J. C. Duda, and P. M. Norris, “Anharmonic phonon interactions at interfaces and contributions to thermal boundary conductance,” Journal of Heat Transfer, vol. 133, Article ID 062401, 11 pages, 2011.
[114]  C. Dames and G. Chen, “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires,” Journal of Applied Physics, vol. 95, no. 2, pp. 682–693, 2004.
[115]  G. Chen, “Diffusion-transmission interface condition for electron and phonon transport,” Applied Physics Letters, vol. 82, no. 6, pp. 991–993, 2003.
[116]  S. Simons, “On the thermal contact resistance between insulators,” Journal of Physics C, vol. 7, no. 22, article 009, pp. 4048–4052, 1974.
[117]  B. M. Clemens, G. L. Eesley, and C. A. Paddock, “Time-resolved thermal transport in compositionally modulated metal films,” Physical Review B, vol. 37, no. 3, pp. 1085–1096, 1988.
[118]  N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976.
[119]  P. E. Hopkins, T. E. Beechem, J. C. Duda, J. L. Smoyer, and P. M. Norris, “Effects of subconduction band excitations on thermal conductance at metal-metal interfaces,” Applied Physics Letters, vol. 96, no. 1, Article ID 011907, 3 pages, 2010.
[120]  G. Wiedemann and R. Franz, “Ueber die warme-leitungsfahigkeit der Metalle,” Annalen Der Physik, vol. 165, no. 4, pp. 978–531, 1853.
[121]  G. D. Mahan and M. Bartkowiak, “Wiedemann-Franz law at boundaries,” Applied Physics Letters, vol. 74, no. 7, pp. 953–954, 1999.
[122]  P. E. Hopkins, R. J. Stevens, and P. M. Norris, “Influence of inelastic scattering at metal-dielectric interfaces,” Journal of Heat Transfer, vol. 130, no. 2, Article ID 022401, 9 pages, 2008.
[123]  T. Beechem, S. Graham, P. Hopkins, and P. Norris, “Role of interface disorder on thermal boundary conductance using a virtual crystal approach,” Applied Physics Letters, vol. 90, no. 5, Article ID 054104, 2007.
[124]  T. Beechem and P. E. Hopkins, “Predictions of thermal boundary conductance for systems of disordered solids and interfaces,” Journal of Applied Physics, vol. 106, no. 12, Article ID 124301, 8 pages, 2009.
[125]  B. Abeles, “Lattice thermal conductivity of disordered semiconductor alloys at high temperatures,” Physical Review, vol. 131, no. 5, pp. 1906–1911, 1963.
[126]  G. Gilat and R. M. Nicklow, “Normal vibrations in aluminum and derived thermodynamic properties,” Physical Review, vol. 143, no. 2, pp. 487–494, 1966.
[127]  R. Weber, “Magnon-phonon coupling in metallic films,” Physical Review, vol. 169, no. 2, pp. 451–456, 1968.
[128]  G. P. Srivastava, The Physics of Phonons, Taylor & Francis, New York, NY, USA, 1990.
[129]  S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “Thermal conductivity of Si-Ge superlattices,” Applied Physics Letters, vol. 70, no. 22, pp. 2957–2959, 1997.
[130]  Z. Su, L. Huang, F. Liu et al., “Layer-by-layer thermal conductivities of the Group III nitride films in blue/green light emitting diodes,” Applied Physics Letters, vol. 100, no. 20, Article ID 201106, 4 pages, 2012.
[131]  D. G. Cahill, S. K. Watson, and R. O. Pohl, “Lower limit to the thermal conductivity of disordered crystals,” Physical Review B, vol. 46, no. 10, pp. 6131–6140, 1992.
[132]  A. Jallipalli, G. Balakrishnan, S. H. Huang et al., “Structural analysis of highly relaxed GaSb grown on GaAs substrates with periodic interfacial array of 90° misfit dislocations,” Nanoscale Research Letters, vol. 4, no. 12, pp. 1458–1462, 2009.
[133]  S. H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L. R. Dawson, and D. L. Huffaker, “Strain relief by periodic misfit arrays for low defect density GaSb on GaAs,” Applied Physics Letters, vol. 88, no. 13, Article ID 131911, 3 pages, 2006.
[134]  D. E. Gray, American Institute of Physics Handbook, McGraw Hill, New York, NY, USA, 3rd edition, 1972.
[135]  M. K. Farr, J. G. Traylor, and S. K. Sinha, “Lattice dynamics of GaSb,” Physical Review B, vol. 11, no. 4, pp. 1587–1594, 1975.
[136]  K. Kunc and R. M. Martin, “Ab initio force constants of gaas: a new approach to calculation of phonons and dielectric properties,” Physical Review Letters, vol. 48, no. 6, pp. 406–409, 1982.
[137]  T. Beechem, J. C. Duda, P. E. Hopkins, and P. M. Norris, “Contribution of optical phonons to thermal boundary conductance,” Applied Physics Letters, vol. 97, no. 6, Article ID 061907, 3 pages, 2010.
[138]  J. C. Duda, T. S. English, E. S. Piekos, W. A. Soffa, L. V. Zhigilei, and P. E. Hopkins, “Implications of cross-species interactions on the temperature dependence of Kapitza conductance,” Physical Review B, vol. 84, no. 19, Article ID 193301, 4 pages, 2011.
[139]  M. Shen, W. J. Evans, D. Cahill, and P. Keblinski, “Bonding and pressure-tunable interfacial thermal conductance,” Physical Review B, vol. 84, no. 19, Article ID 195432, 6 pages, 2011.
[140]  L. Zhang, P. Keblinski, J. S. Wang, and B. Li, “Interfacial thermal transport in atomic junctions,” Physical Review B, vol. 83, no. 6, Article ID 064303, 9 pages, 2011.
[141]  L. Hu, L. Zhang, M. Hu, J. S. Wang, L. Baowen, and P. Keblinski, “Phonon interference at self-assembled monolayer interfaces: molecular dynamics simulations,” vol. 81, no. 23, Article ID 235427, 5 pages, 2010.
[142]  M. Hu, P. Keblinski, and P. K. Schelling, “Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations,” Physical Review B, vol. 79, no. 10, Article ID 104305, 7 pages, 2009.
[143]  W. P. Hsieh, A. S. Lyons, E. Pop, P. Keblinski, and D. G. Cahill, “Pressure tuning of the thermal conductance of weak interfaces,” Physical Review B, vol. 84, no. 18, Article ID 184107, 5 pages, 2011.
[144]  M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, “Effects of chemical bonding on heat transport across interfaces,” Nature Materials, vol. 11, pp. 502–506, 2012.
[145]  K. C. Collins and G. Chen, “Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces,” Applied Physics Letters, vol. 97, no. 8, Article ID 083102, 3 pages, 2010.
[146]  C. Monachon and L. Weber, “Thermal boundary conductance of transition metals on diamond,” Emerging Materials Research, vol. 1, pp. 89–98, 2012.
[147]  M. Baraket, S. G. Walton, E. H. Lock, J. T. Robinson, and F. K. Perkins, “The functionalization of graphene using electron-beam generated plasmas,” Applied Physics Letters, vol. 96, no. 23, Article ID 231501, 3 pages, 2010.
[148]  E. H. Lock, M. Baraket, M. Laskoski et al., “High-quality uniform dry transfer of graphene to polymers,” Nano Letters, vol. 12, pp. 102–107, 2012.
[149]  R. J. Stoner, H. J. Maris, T. R. Anthony, and W. F. Banholzer, “Measurements of the Kapitza conductance between diamond and several metals,” Physical Review Letters, vol. 68, no. 10, pp. 1563–1566, 1992.
[150]  R. Nicklow, N. Wakabayashi, and H. G. Smith, “Lattice dynamics of pyrolytic graphite,” Physical Review B, vol. 5, pp. 4951–4962, 1972.
[151]  S. V. Kusminskiy, D. K. Campbell, and A. H. C. Neto, “Lenosky's energy and the phonon dispersion of graphene,” Physical Review B, vol. 80, no. 3, Article ID 035401, 3 pages, 2009.
[152]  W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, “Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite,” Nano Letters, vol. 10, no. 10, pp. 3909–3913, 2010.
[153]  Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, “Heat conduction across monolayer and few-layer graphenes,” Nano Letters, vol. 10, no. 11, pp. 4363–4368, 2010.
[154]  A. J. Schmidt, K. C. Collins, A. J. Minnich, and G. Chen, “Thermal conductance and phonon transmissivity of metal-graphite interfaces,” Journal of Applied Physics, vol. 107, no. 10, Article ID 104907, 5 pages, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133