A three-dimensional analysis of the heat and mass transfer phenomena inside a vapor chamber is essential for correctly understanding its thermal performance limitations and structural optimization. This paper presents a complete three-dimensional numerical analysis and comparative study of two different miniature vapor chambers designs with identical external geometry and dimensions but different internal structures: one having a wicked pillar array and the other one without the wicked pillars array. The distribution of the wicked pillar array in the vapor core was aligned. Detailed comparative experimental results are also reported, which were performed to verify the calculations from the numerical simulations. It was found that the numerical and experimental results agree quite well, especially at high heat flux values. It is also observed that the vapor chamber with wicked pillars had a better thermal performance than the conventional design, with a 5% decrease in terms of total thermal resistance due to the added extra channels that allow a better flow of the working fluid to the evaporator surface. An insight into how improving the thermal performance of a vapor chamber is provided through the detailed three-dimensional numerical simulations. 1. Introduction The recent developments in information technology demand large scale integration of electronic circuits, as well as better performance of microelectronic devices. However, as the heat generation rates in electronic chips are continuously becoming larger, to cool such systems effectively also has become a critical problem. Putra et al. [1] suggested that the heat flux of new microprocessor for commercial applications may exceed 100?W/cm2. For hybrid starter-alternator in the automotive industry the electronic components can generate heat fluxes in the range 40–400?W/cm2 [2]. Traditional cooling methods suggest increasing the total surface area of the heat sink or improving the forced convection with the use of fans, but these methods have a performance limit within a specified space constraint. Heat pipe technology is another commonly implemented method which has a number of industrial and electronic applications. Mochizuki et al. [3, 4] suggested the use of the vapor chamber is one of the most effective methods to cool chips. A vapor chamber, a special type of heat pipe, is a vacuum container with a wick structure lining the internal wall, which contains a working fluid, such as water. On applying heat, the water evaporates at the heated surface, and the vapor condenses back to the liquid state
References
[1]
N. Putra, Yanuar, and F. N. Iskandar, “Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment,” Experimental Thermal and Fluid Science, vol. 35, no. 7, pp. 1274–1281, 2011.
[2]
S. Harmand, R. Sonan, M. Fakès, and H. Hassan, “Transient cooling of electronic components by flat heat pipes,” Applied Thermal Engineering, vol. 31, no. 11-12, pp. 1877–1885, 2011.
[3]
M. Mochizuki, T. Nguyen, K. Mashiko, et al., “Practical application of heat pipe and vapor chamber for cooling high performance personal computer,” in Proceedings of the 13th International Heat Pipe Conference, pp. 448–454, 2004.
[4]
M. Mochizuki, T. Nguyen, K. Mashiko, et al., “Latest technology using micro heat pipes and vapor chamber for cooling personal computer,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, 2004.
[5]
Y. Koito, K. Motomatsu, H. Imura, M. Mochizuki, and Y. Saito, “Fundamental investigations on heat transfer characteristics of heat sinks with a vapor chamber,” in Proceedings of the 7th International Heat Pipe Symposium, pp. 247–251, 2003.
[6]
R. Boukhanouf, A. Haddad, M. T. North, and C. Buffone, “Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera,” Applied Thermal Engineering, vol. 26, no. 17-18, pp. 2148–2156, 2006.
[7]
Y. Xuan, Y. Hong, and Q. Li, “Investigation on transient behaviors of flat plate heat pipes,” Experimental Thermal and Fluid Science, vol. 28, no. 2-3, pp. 249–255, 2004.
[8]
Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, “Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber,” Applied Thermal Engineering, vol. 26, no. 14-15, pp. 1669–1676, 2006.
[9]
S. Hsieh, R. Lee, J. Shyu, and S. Chen, “Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar,” Energy Conversion and Management, vol. 48, no. 10, pp. 2708–2717, 2007.
[10]
G. Carbajal, C. B. Sobhan, G. P. Peterson, D. T. Queheillalt, and H. N. G. Wadley, “Thermal response of a flat heat pipe sandwich structure to a localized heat flux,” International Journal of Heat and Mass Transfer, vol. 49, no. 21-22, pp. 4070–4081, 2006.
[11]
G. Carbajal, C. B. Sobhan, G. P. Bud Peterson, D. T. Queheillalt, and H. N. G. Wadley, “A quasi-3D analysis of the thermal performance of a flat heat pipe,” International Journal of Heat and Mass Transfer, vol. 50, no. 21-22, pp. 4286–4296, 2007.
[12]
D. T. Queheillalt, G. Carbajal, H. N. G. Wadley, and G. P. Peterson, “A multifunctional heat pipe sandwich panel structure,” International Journal of Heat and Mass Transfer, vol. 51, no. 1-2, pp. 312–326, 2008.
[13]
W. S. Chang and G. T. Colwell, “Mathematical modeling of the transient operating characteristics of a low-temperature heat pipe,” Numerical Heat Transfer, vol. 8, no. 2, pp. 169–186, 1985.
[14]
M. N. Chen and A. Faghri, “An analysis of the vapor flow and the heat conduction through the liquid—wick and pipe wall in a heat pipe with single or multiple heat sources,” International Journal of Heat and Mass Transfer, vol. 33, no. 9, pp. 1945–1955, 1990.
[15]
J. M. Tournier and M. S. El-Genk, “A heat pipe transient analysis model,” International Journal of Heat and Mass Transfer, vol. 37, no. 5, pp. 753–762, 1994.
[16]
Z. J. Zuo and A. Faghri, “Boundary element approach to transient heat pipe analysis,” Numerical Heat Transfer A, vol. 32, no. 3, pp. 205–220, 1997.
[17]
J. Li and G. P. Peterson, “3D heat transfer analysis in a loop heat pipe evaporator with a fully saturated wick,” International Journal of Heat and Mass Transfer, vol. 54, no. 17-18, pp. 564–574, 2011.
[18]
J. Li, G. P. Peterson, and P. Cheng, “Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow,” International Journal of Heat and Mass Transfer, vol. 47, no. 19-20, pp. 4215–4231, 2004.
[19]
J. Qu and H. Y. Wu, “Flow visualization of silicon-based micro pulsating heat pipes,” Science China Technological Sciences, vol. 53, no. 4, pp. 984–990, 2010.
[20]
J.-T. Feng, G.-P. Lin, and L.-Z. Bai, “Experimental investigation on operating instability of a dual compensation chamber loop heat pipe,” Science in China E, vol. 52, no. 8, pp. 2316–2322, 2009.