Sound visualization techniques have played a key role in the development of acoustics throughout history. The development of measurement apparatus and techniques for displaying sound and vibration phenomena has provided excellent tools for building understanding about specific problems. Traditional methods, such as step-by-step measurements or simultaneous multichannel systems, have a strong tradeoff between time requirements, flexibility, and cost. However, if the sound field can be assumed time stationary, scanning methods allow us to assess variations across space with a single transducer, as long as the position of the sensor is known. The proposed technique, Scan and Paint, is based on the acquisition of sound pressure and particle velocity by manually moving a P-U probe (pressure-particle velocity sensors) across a sound field whilst filming the event with a camera. The sensor position is extracted by applying automatic color tracking to each frame of the recorded video. It is then possible to visualize sound variations across the space in terms of sound pressure, particle velocity, or acoustic intensity. In this paper, not only the theoretical foundations of the method, but also its practical applications are explored such as scanning transfer path analysis, source radiation characterization, operational deflection shapes, virtual phased arrays, material characterization, and acoustic intensity vector field mapping. 1. Introduction In the development of acoustics, sound representations have been thought of as a key to aid in its understanding. The necessity to represent sound and vibration information visually triggered many investigations with a common goal: to create tools to build intuition and understanding upon specific problems. Many alternative methods and apparatus have been proposed over time [1] as is addressed in the following section. Nevertheless, the current measurement procedures for characterizing sound fields can be classified by three major categories, regardless of the postprocessing techniques applied: step-by-step, simultaneous, and scanning measurements. Each of these techniques can be evaluated simply using three main features: measurement time, flexibility, and total cost of the equipment. Step-by-step is the most common technique to create spatial representations of stationary sound fields. It is based upon the acquisition of data at a set of discrete positions. The flexibility of this method is one of its main advantages since the number of transducers and their spatial distribution are completely customizable. The
References
[1]
R. T. Beyer, Sounds of Our Times, Two Hundred Years of Acoustics, Springer, Berlin, Germany, 1999.
[2]
J. Hald, “STSF—a unique technique for scan-based near-field acoustic holography without restrictions on coherence,” B & K Technical Review 1, Brüel & Kj?r, 1989.
[3]
H.-S. Kwon and Y.-H. Kim, “Moving frame technique for planar acoustic holography,” Journal of the Acoustical Society of America, vol. 103, no. 4, pp. 1734–1741, 1998.
[4]
S.-H. Park and Y.-H. Kim, “An improved moving frame acoustic holography for coherent bandlimited noise,” Journal of the Acoustical Society of America, vol. 104, no. 6, pp. 3179–3189, 1998.
[5]
S.-H. Park and Y.-H. Kim, “Effects of the speed of moving noise sources on the sound visualization by means of moving frame acoustic holography,” Journal of the Acoustical Society of America, vol. 108, no. 6, pp. 2719–2728, 2000.
[6]
S.-H. Park and Y.-H. Kim, “Visualization of pass-by noise by means of moving frame acoustic holography,” Journal of the Acoustical Society of America, vol. 110, pp. 2326–2339, 2001.
[7]
W. C. Sabine, “Architectural acoustics,” Journal of the Franklin Institute, vol. 179, no. 1, pp. 1–20, 1915.
[8]
W. E. Kock, Seeing Sound, Wiley-Interscience, New York, NY, USA, 1971.
[9]
C. M. Hutchins, K. A. Stetsona, and P. A. Taylor, “Clarification of “free plate tap tones” by hologram interferometry,” The Catgut Acoustical Society Newsletter, no. 16, pp. 15–23, 1971.
[10]
D. Fernandez Comesana, E. Latorre Iglesias, H. E. de Bree, J. Wind, M. G. Smith, and K. R. Holland, “Measuring operational deflection shapes with a scanning P-U probe,” in Proceedings of the 19th International Conference of Noise and Vibration (ICSV '12), Vilinius, Lithuania, 2012.
[11]
D. Fernandez Comesana, T. Takeuchi, S. Morales Cervera, and K. R. Holland, “Measuring musical instruments directivity patterns with scanning techniques,” in Proceedings of the 19th International Conference of Noise and Vibration (ICSV '12), Vilinius, Lithuania, 2012.
[12]
D. Fernandez Comesana, D. Garcia Escribano, and H. E. de Bree, “Helicopter cabin interior noise assessment using Scan & Paint Transfer Path Analysis,” in Proceedings of the European Rotorcraft Forum, Amsterdam, Netherlands, 2012.
[13]
E. F. F. Chladni, Entdeckungen Uber Die Theorie Des Klanges, Etc, Breitkopf & H?rtel, 1787.
[14]
A. Toepler, “Optischen studien nach der methode der schlierenbeobachtung,” Poggendorfs Annalen Der Physik Und Chemie, vol. 131, pp. 33–55, 1867.
[15]
T. D. Rossing, Springer Handbook of Acoustics, Springer Handbooks, Springer, Berlin, Germany, 2007.
[16]
V. Dvorak, “On a new, simple method of observing schlieren,” Annals of Physics, vol. 9, pp. 502–511, 1880.
[17]
L. L. Beranek, Acoustic Measurements, John Wiley & Sons, New York, NY, USA, 1949.
[18]
W. E. Kock, Sound Waves and Light Waves, Anchor Books, 1965.
[19]
G. M. Brown, R. M. Grant, and G. W. Stroke, “Theory of Holographic Interferometry,” Journal of the Acoustical Society of America, vol. 45, no. 5, pp. 1166–1179, 1969.
[20]
U. Michel, “History of acoustic beamforming,” in Proceedings of Berlin Beamforming Conference (BeBeC '06), 2006.
[21]
J. Billingsley, “An acoustic telescope,” Aeronautical Research Council ARC 35/364, 1974.
[22]
H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, 1996.
[23]
A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization problems,” IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1770–1778, 2008.
[24]
D. Gabor, “A new microscopic principle,” Nature, vol. 161, pp. 777–778, 1948.
[25]
E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communications theory,” Journal of the Optical Society of America, vol. 52, pp. 1123–1130, 1962.
[26]
W. E. Kock, “Hologram television,” Proceedings of the IEEE, vol. 54, no. 2, p. 331, 1966.
[27]
E. G. Williams, J. D. Maynard, and E. Skudrzyk, “Sound source reconstructions using a microphone array,” Journal of the Acoustical Society of America, vol. 68, no. 1, pp. 340–344, 1980.
[28]
E. G. Williams and J. D. Maynard, “Holographic imaging without the wavelength resolution limit,” Physical Review Letters, vol. 45, no. 7, pp. 554–557, 1980.
[29]
J. D. Maynard, E. G. Williams, and Y. Lee, “Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH,” Journal of the Acoustical Society of America, vol. 78, no. 4, pp. 1395–1413, 1985.
[30]
W. A. Veronesi and J. D. Maynard, “Nearfield acoustical holography (NAH) II. Holographic reconstruction algorithms and computer implementation,” Journal of the Acoustical Society of America, vol. 81, no. 5, pp. 1307–1321, 1987.
[31]
W. A. Veronesi and J. D. Maynard, “Digital holographic reconstruction of sources with arbitrarily shaped surfaces,” Journal of the Acoustical Society of America, vol. 85, pp. 588–598, 1989.
[32]
E. Tijs, H.-E. de Bree, and S. Steltenpool, “Scan & paint: a novel sound visualization technique,” in Proceedings of the 39th International Congress and Exposition on Noise Control Engineering (Inter-Noise '10), 2010.
[33]
H.-E. de Bree, J. Wind, E. Tijs, and A. Grosso, “Scan & paint, a new fast tool for sound source localization and quantification of machinery in reverberant conditions,” in VDI Maschinenakustik, 2010.
[34]
D. Fernandez Comesana, Mapping stationary sound fields [M.S. thesis], Institute of Sound and Vibration Research, 2010.
[35]
J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, John Wiley & Sons, 4th edition, 2010.
[36]
D. Fernández Comesa?a, J. Wind, K. Holland, and A. Grosso, “Far field source localization using two transducers: a virtual array approach,” in Proceedings of 18th International Congress of Sound and Vibration (ICSV '11), 2011.
[37]
H.-E. de Bree, V. B. Svetovoy, R. Raangs, and R. Visser, “The very near field theory, simulations and measurements of sound pressure and particle velocity in the very near field,” in Proceedings of the 11th International Conference on Sound and Vibration (ICSV '04), Petersburg, Russia, 2004.
[38]
O. Dossing, “Structural stroboscopy—measurement of operational deflection shapes,” Sound and Vibration Magazine, vol. 1, pp. 18–24, 1988.
[39]
M. H. Richardson, “Is it a mode shape, or an operating deflection shape?” Sound and Vibration, vol. 31, no. 1, pp. 54–61, 1997.
[40]
B. J. Schwarz and M. H. Richardson, “Experimental modal analysis,” in Proceedings of CSI Reliability Week, Orlando, Fla, USA, 1999.
[41]
J. Allard and B. Sieben:, “Measurements of acoustic impedance in a free field with two microphones and a spectrum analyzer,” Journal of the Acoustical Society of America, vol. 77, pp. 1617–1618, 1985.
[42]
J.-F. Li and M. Hodgson, “Use of pseudo-random sequences and a single microphone to measure surface impedance at oblique incidence,” Journal of the Acoustical Society of America, vol. 102, no. 4, pp. 2200–2210, 1997.
[43]
R. Kruse, In-situ measurement of ground impedances with specialregard to frequencies below 500Hz [M.S. thesis], Fakult?tfür Mathematik und Naturwissenschaften derCarl von Ossietzky Universit?t, 2008.
[44]
J. D. Alvarez and F. Jacobsen, “An iterative method for determining the surface impedance of acoustic materials in situ,” in Proceedings of the 37th International Congress and Exposition on Noise Control Engineering (Inter-Noise '08), 2008.
[45]
E. Brand?o, E. Tijs, A. Lenzi, and H.-E. De Bree, “A comparison of three methods to calculate the surface impedance and absorption coefficient from measurements under free field or in situ conditions,” Acta Acustica United with Acustica, vol. 97, no. 6, pp. 1025–1033, 2011.
[46]
S. Weyna, “Acoustic flow visualization based on the particle velocity measurements,” in Proceedings of Forum Acousticum, 2005.