全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cauchy Six-Dimensional Formalism for Lamb Waves in Multilayered Plates

DOI: 10.1155/2013/698706

Full-Text   Cite this paper   Add to My Lib

Abstract:

Propagation of Lamb waves in multilayered elastic anisotropic plates is studied in the framework of combination of the six-dimensional Cauchy formalism and the transfer matrix method. The closed form secular equations for dispersion curves of Lamb waves propagating in multilayered plates with arbitrary elastic anisotropy are obtained. 1. Introduction Herein, a brief introduction to the theory of Lamb waves and a review of some of the most important works on this matter are presented. 1.1. Lamb Waves in a Homogeneous Isotropic Plate The first works [1, 2] on waves propagating in an infinite isotropic homogeneous plate with the traction-free boundary surfaces were done at the assumption that the wavelength is much longer than the plate thickness. The complete theory of harmonic Lamb waves free from the long wavelength limit assumption was presented in [3]. The starting point of the Lamb theory is considering the equation of motion in the form where is the displacement field and and are velocities of the longitudinal and transverse bulk waves, respectively: In (2), and are Lamé constants and is the material density. Then, the displacement field was represented in terms of scalar ( ) and vector ( ) potentials The potentials were assumed to be harmonic in time: Substituting representation (4) into (1) yields two independent Helmholtz equations: To define the spatial periodicity and to simplify the analysis, the splitting spatial argument is needed: where is the unit wave vector, is the unit normal to the median plane of the plate, and . Remark 1. For the considered waves, it was further assumed that the displacement field does not depend upon argument . That allowed Lamb [3] to consider scalar potentials and in (4) instead of vector ones (actually, Lamb considered the vector potential composed of one nonvanishing component ). The further assumption relates to the periodicity of the potentials in the direction of propagation where the dimensionless complex coordinates and are In (8), and is the wave number related to the wavelength by Substituting representations (7) into (5) results in the decoupled ordinary differential equations where the phase speed relates to the frequency and the wave number by the following relation: The general solution of (10) can be written in the form where The unknown coefficients in (12) are defined (up to a multiplier) from the following boundary conditions on the free surfaces: where is the depth of the plate. Substitution representation (3) into boundary conditions (14) yields boundary conditions written in terms of potentials

References

[1]  J. W. Rayleigh, “On the free vibrations of an infinite plate of homogeneous isotropic elastic matter,” Proceedings of the London Mathematical Society, vol. 20, pp. 225–234, 1889.
[2]  H. Lamb, “On the flexure of an elastic plate,” Proceedings of the London Mathematical Society, vol. 21, pp. 70–90, 1889.
[3]  H. Lamb, “On waves in an elastic plate,” Proceedings of the Royal Society A, vol. 93, pp. 114–128, 1917.
[4]  J. W. Rayleigh, “On wave propagating along the plane surface of an elastic solid,” Proceedings of the London Mathematical Society, vol. 17, pp. 4–11, 1885.
[5]  R. D. Mindlin, “Waves and vibrations in isotropic, elastic plates,” in Proceedings of the 1st Symposium on Naval Structural Mechanics, J. N. Goodies and N. J. Hoff, Eds., pp. 199–232, Pergamon Press, Oxford, UK.
[6]  I. A. Viktorov, Rayleigh and Lamb Wave. Physical Theory and Application, Plenum Press, New York, NY, USA, 1967.
[7]  H. Jeffreys, “The surface waves of Earthquakes,” Geophysical Journal International, vol. 3, pp. 253–261, 1935.
[8]  V. G. Gogoladze, “Dispersion of Rayleigh waves in a layer,” Trudy Instituta Seismologii Akademii Nauk USSR, vol. 119, pp. 27–38, 1947 (Russian).
[9]  J. T. Wilson and O. Baykal, “On the North Atlantic basin as determined from Rayleigh wave dispersion,” Bulletin of the Seismological Society of America, vol. 38, pp. 41–53, 1948.
[10]  M. B. Dobrin, “Dispersion in seismic surface waves,” Geophysics, vol. 16, pp. 63–80, 1951.
[11]  A. Freedmab, “The vibration, with the Poisson ratio, of Lamb modes in a free plate, I: general spectra,” Journal of Sound and Vibration, vol. 137, no. 2, pp. 209–230, 1990.
[12]  A. Freedman, “The variation, with the Poisson ratio, of Lamb modes in a free plate, II: at transitions and coincidence values,” Journal of Sound and Vibration, vol. 137, no. 2, pp. 231–247, 1990.
[13]  A. Freedman, “The variation, with the Poisson ratio, of Lamb modes in a free plate, III: behaviour of individual modes,” Journal of Sound and Vibration, vol. 137, no. 2, pp. 249–266, 1990.
[14]  Q. Zhu and W. G. Mayer, “On the crossing points of Lamb wave velocity dispersion curves,” Journal of the Acoustical Society of America, vol. 93, no. 4 I, pp. 1893–1895, 1993.
[15]  G. G. Stokes, “On the theory of oscillatory waves,” Transactions of the Cambridge Philosophical Society, vol. 8, pp. 441–455, 1847.
[16]  J. W. Rayleigh, “On progressive waves,” Proceedings of the London Mathematical Society, vol. 9, pp. 21–26, 1877.
[17]  J. W. Rayleigh, Theory of Sound, Ulan Press, 2011.
[18]  O. Reynolds, “On the rate of progression of groups of waves and the rate at which energy is transmitted by waves,” Nature, vol. 16, pp. 343–344, 1877.
[19]  K. Sezawa and K. Kanai, “On the propagation of Rayleigh waves in dispersive elastic media,” Bulletin of the Earthquake Research Institute, vol. 19, pp. 549–553, 1941.
[20]  Y. Sato, “Study on surface waves. II: velocity of surface waves propagated upon elastic plates,” Bulletin of the Earthquake Research Institute, vol. 29, pp. 223–261, 1951.
[21]  F. Press and M. Ewing, “Theory of air-coupled flexural waves,” Journal of Applied Physics, vol. 22, no. 7, pp. 892–899, 1951.
[22]  F. Press and J. Oliver, “Model study of air-coupled surface waves,” Journal of the Acoustical Society of America, vol. 27, pp. 43–46, 1955.
[23]  I. Tolstoy, “Dispersion and simple harmonic sources in wave ducts,” Journal of the Acoustical Society of America, vol. 27, pp. 897–910, 1955.
[24]  I. Tolstoy and E. Usdin, “Wave propagation in elastic plates: low and high mode dispersion,” Journal of the Acoustical Society of America, vol. 29, pp. 37–42, 1957.
[25]  K. Negishi, “Existence of negative group velocities for Lamb waves,” Japanese Journal of Applied Physics, vol. 26, supplement 26-1, pp. 171–173, 1987.
[26]  M. A. Biot, “General theorems on the equivalence of group velocity and energy transport,” Physical Review, vol. 105, no. 4, pp. 1129–1137, 1957.
[27]  R. Stoneley, “The seismological implications of aelotropy in continental structures,” The Geophysical Supplements to Monthly Notices of the Royal Astronomical Society, vol. 5, pp. 343–353, 1949.
[28]  M. J. P. Musgrave, “On the propagation of elastic waves in aeolotropic media. I. general principles,” Proceedings of the Royal Society A, vol. 226, pp. 339–355, 1954.
[29]  M. J. P. Musgrave, “On the propagation of elastic waves in aeolotropic media. II. media of hexagonal symmetry,” Proceedings of the Royal Society A, vol. 226, pp. 356–366, 1954.
[30]  V. T. Buchwald, “Rayleigh waves in transversely isotropic media,” Quarterly Journal of Mechanics and Applied Mathematics, vol. 14, no. 3, pp. 293–318, 1961.
[31]  R. Stoneley, “The propagation of surface elastic waves in a cubic crystal,” Proceedings of the Royal Society A, vol. 232, pp. 447–458, 1955.
[32]  G. F. Miller and M. J. P. Musgrave, “On the propagation of elastic waves in aeolotropic media. III. Media of cubic symmetry,” Proceedings of the Royal Society A, vol. 236, pp. 352–383, 1956.
[33]  M. Mitra, “Propagation of elastic waves in an infinite plate of cylindrically aelotropic material,” Zeitschrift für angewandte Mathematik und Physik, vol. 10, no. 6, pp. 579–583, 1959.
[34]  D. L. Anderson, “Elastic wave propagation in layered anisotropic media,” Journal of Geophysical Research, vol. 66, pp. 2953–2963, 1961.
[35]  L. P. Solie and B. A. Auld, “Elastic waves in free anisotropic plates,” Journal of the Acoustical Society of America, vol. 54, pp. 50–65, 1973.
[36]  A. H. Nayfeh and D. E. Chimenti, “Free wave propagation in plates of general anisotropic media,” Journal of Applied Mechanics, vol. 56, no. 4, pp. 881–886, 1989.
[37]  V. Dayal and V. K. Kinra, “Leaky Lamb waves in an anisotropic plate. I: an exact solution and experiments,” Journal of the Acoustical Society of America, vol. 85, pp. 2268–2276, 1989.
[38]  A. Ben-Menahem and A. G. Sena, “Seismic source theory in stratified anisotropic media,” Journal of Geophysical Research, vol. 95, no. 10, pp. 15–427, 1990.
[39]  G. R. Liu, J. Tani, K. Watanabe, and T. Ohyoshi, “Lamb wave propagation in anisotropic laminates,” Journal of Applied Mechanics, vol. 57, pp. 923–9929, 1990.
[40]  W. Lin and L. M. Keer, “A study of Lamb waves in anisotropic plates,” Journal of the Acoustical Society of America, vol. 92, no. 2, pp. 888–894, 1992.
[41]  G. Neau, Lamb waves in anisotropic viscoelastic plates. Study of the wave fronts and attenuation [Ph.D. thesis], Universite de Bordeaux, Bordeaux, France, 2003.
[42]  G. Neau, M. Deschamps, and M. J. S. Lowe, “Group velocity of Lamb waves in anisotropic plates: comparison between theory and experiment,” in Review of Progress in Quantitative NDE, D. O. Thompson and D. E. Chimenti, Eds., vol. 20, pp. 81–88, American Inst. Physics, New York, NY, USA, 2001.
[43]  L. Wang and F. G. Yuan, “Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments,” Composites Science and Technology, vol. 67, no. 7-8, pp. 1370–1384, 2007.
[44]  S. V. Kuznetsov, “Surface waves of non-Rayleigh type,” Quarterly of Applied Mathematics, vol. 61, no. 3, pp. 575–582, 2003.
[45]  S. V. Kuznetsov, “Subsonic lamb waves in anisotropic plates,” Quarterly of Applied Mathematics, vol. 60, no. 3, pp. 577–587, 2002.
[46]  S. A. Markus, “Low frequency approximations for zero-order normal modes in anisotropic plates,” Akusticheskii Zhurnal, vol. 33, pp. 1091–1095, 1987 (Russian).
[47]  V. I. Alshits and V. N. Lyubimov, “Abnormal dispersion of surface elastic waves in anisotropic plate,” Kristallografiya, vol. 33, pp. 279–285, 1988 (Russian).
[48]  A. N. Stroh, “Steady state problems in anisotropic elasticity,” Journal of Mathematical Physics, vol. 41, pp. 77–103, 1962.
[49]  K. A. Ingebrigtsen and A. Tonning, “Elastic surface waves in crystals,” Physical Review, vol. 184, no. 3, pp. 942–951, 1969.
[50]  D. M. Barnett and J. Lothe, “Synthesis of the sextic and the integral formalism for dislocations, Greens functions, and surface waves in anisotropic elastic solids,” Physica Norvegica, vol. 7, pp. 13–19, 1973.
[51]  P. Chadwick and G. D. Smith, “Foundations of the theory of surface waves in anisotropic elastic materials,” Advances in Applied Mechanics, vol. 17, no. C, pp. 303–376, 1977.
[52]  T. C. T. Ting and D. M. Barnett, “Classifications of surface waves in anisotropic elastic materials,” Wave Motion, vol. 26, no. 3, pp. 207–218, 1997.
[53]  T. C. T. Ting, “On extraordinary semisimple matrix N(v) for anisotropic elastic materials,” Quarterly of Applied Mathematics, vol. 55, no. 4, pp. 723–738, 1997.
[54]  Y. B. Fu, “Hamiltonian interpretation of the Stroh formalism in anisotropic elasticity,” Proceedings of the Royal Society A, vol. 463, no. 2088, pp. 3073–3087, 2007.
[55]  K. Tanuma, Stroh Formalism and Rayleigh Waves, Springer, New York, NY, USA, 2010.
[56]  A. L. Shuvalov, “On the theory of wave propagation in anisotropic plates,” Proceedings of the Royal Society A, vol. 456, pp. 2197–2222, 2000.
[57]  V. I. Alshits, M. Deschamps, and G. A. Maugin, “Elastic waves in anisotropic plates: short-wavelength asymptotics of the dispersion branches νn(k),” Wave Motion, vol. 37, no. 3, pp. 273–292, 2003.
[58]  W. T. Thomson, “Transmission of elastic waves through a stratified solid medium,” Journal of Applied Physics, vol. 21, no. 2, pp. 89–93, 1950.
[59]  N. A. Haskell, “Dispersion of surface waves on multilayered media,” Bulletin of the Seismological Society of America, vol. 4317, p. 34, 1953.
[60]  N. Guo and P. Cawley, “Lamb wave propagation in composite laminates and its relationship with acousto-ultrasonics,” NDT and E International, vol. 26, no. 2, pp. 75–84, 1993.
[61]  D. E. Chimenti, “Lamb waves in microstructured plates,” Ultrasonics, vol. 32, no. 4, pp. 255–260, 1994.
[62]  M. J. S. Lowe, “Matrix techniques for modeling ultrasonic waves in multilayered media,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 4, pp. 525–542, 1995.
[63]  A. H. Nayfeh, “The general problem of elastic wave propagation in multilayered anisotropic media,” Journal of the Acoustical Society of America, vol. 89, no. 4 I, pp. 1521–1531, 1991.
[64]  J. T. Stewart and Y.-K. Yong, “Exact analysis of the propagation of acoustic waves in multilayered anisotropic piezoelectric plates,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 41, no. 3, pp. 375–390, 1994.
[65]  J. W. Dunkin, “Computation of modal solutions in layered elastic media at high frequencies,” Bulletin of the Seismological Society of America, vol. 55, pp. 335–3358, 1965.
[66]  D. Lévesque and L. Piché, “A robust transfer matrix formulation for the ultrasonic response of multilayered absorbing media,” Journal of the Acoustical Society of America, vol. 92, no. 1, pp. 452–467, 1992.
[67]  M. Castaings and B. Hosten, “Delta operator technique to improve the Thomson-Haskell-method stability for propagation in multilayered anisotropic absorbing plates,” Journal of the Acoustical Society of America, vol. 95, no. 4, pp. 1931–1941, 1994.
[68]  L. Wang and S. I. Rokhlin, “Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media,” Ultrasonics, vol. 39, no. 6, pp. 413–424, 2001.
[69]  L. Wang and S. I. Rokhlin, “Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 9, pp. 1060–1071, 2004.
[70]  E. L. Tan, “Hybrid compliance-stiffness matrix method for stable analysis of elastic wave propagation in multilayered anisotropic media,” Journal of the Acoustical Society of America, vol. 119, no. 1, pp. 45–53, 2006.
[71]  L. Knopoff, “A matrix method for elastic wave problems,” Bulletin of the Seismological Society of America, vol. 54, pp. 431–438, 1964.
[72]  A. K. Mal and L. Knopoff, “A differential equation for surface waves in layers with varying thickness,” Journal of Mathematical Analysis and Applications, vol. 21, no. 2, pp. 431–444, 1968.
[73]  F. Schwab and L. Knopoff, “Surface waves on multilayered anelastic media,” Bulletin of the Seismological Society of America, vol. 61, pp. 893–912, 1971.
[74]  M. J. Randall, “Fast programs for layered half-space problems,” Bulletin of the Seismological Society of America, vol. 57, pp. 1299–1315, 1967.
[75]  H. Schmidt and F. B. Jensen, “A full wave solution for propagation in multilayered viscoelastic media with application to Gaussian beam reflection at fluid-solid interfaces,” Journal of the Acoustical Society of America, vol. 77, pp. 813–825, 1985.
[76]  A. K. Mal, “Wave propagation in layered composite laminates under periodic surface loads,” Wave Motion, vol. 10, no. 3, pp. 257–266, 1988.
[77]  B. Pavlakovic, M. Lowe, D. Alleyne, and P. Cawley, “Disperse: a general purpose program for creating dispersion curves,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, Eds., vol. 16, pp. 185–1192, Plenum Press, NY, NY, USA, 1997.
[78]  A. Abo-Zena, “Dispersion function computations for unlimited frequency values,” Geophysical Journal of the Royal Astronomical Society, vol. 58, pp. 91–105, 1979.
[79]  P. Hartman, Ordinary Differential Equations, SIAM, New York, NY, USA, 2002.
[80]  M. C. Pease III, Methods of Matrix Algebra, Academic Press, London, UK, 1965.
[81]  C. Y. Guo and L. Wheeler, “Extreme Poisson's ratios and related elastic crystal properties,” Journal of the Mechanics and Physics of Solids, vol. 54, no. 4, pp. 690–707, 2006.
[82]  K. Kamitani, M. Grimsditch, J. C. Nipko, C.-K. Loong, M. Okada, and I. Kimura, “The elastic constants of silicon carbide: a Brillouin-scattering study of 4H and 6H SiC single crystals,” Journal of Applied Physics, vol. 82, no. 6, pp. 3152–3154, 1997.
[83]  A. Zerr, G. Miehe, G. Serghiou et al., “Synthesis of cubic silicon nitride,” Nature, vol. 400, no. 6742, pp. 340–342, 1999.
[84]  J. D. Clayton, “Modeling nonlinear electromechanical behavior of shocked silicon carbide,” Journal of Applied Physics, vol. 107, no. 1, Article ID 013520, 18 pages, 2010.
[85]  J. D. Clayton, Nonlinear Mechanics of Crystals, Springer, Dordrecht, The Netherlands, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133