全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Elastic Analysis of Rotating Thick Truncated Conical Shells Subjected to Uniform Pressure Using Disk Form Multilayers

DOI: 10.1155/2014/764837

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using disk form multilayers, an elastic analysis is presented for determination of displacements and stresses of rotating thick truncated conical shells. The cone is divided into disk layers form with their thickness corresponding to the thickness of the cone. Due to the existence of shear stress in the truncated cone, the equations governing disk layers are obtained based on first shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the truncated cone is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. The results obtained have been compared with those obtained through the analytical solution and the numerical solution. 1. Introduction Scientists have paid an enormous amount of attention to shells, resulting in numerous theories about their behavior of different kinds of shells. Truncated conical shells have widely been applied in many fields such as space fight, rocket, aviation, and submarine technology. The literature that addresses the stresses of thick conical shells is quite limited. Most of the existing literature deals with the stress or vibration analysis of thin conical shells and is based upon a thin shell or membrane shell theory. Using the first shear deformation theory, Mirsky and Hermann [1] derived the solution of thick cylindrical shells of homogenous and isotropic materials. Assuming the cone is to be long and the angle of the lateral side with a horizontal plane is great, Hausenbauer and Lee [2] without considering shear stresses obtained the radial, tangential, and axial wall stresses in a thick-walled cone under internal and/or external pressure. Raju et al. [3] introduced a conical element for analysis of conical shells. Using the shear deformation theory and Frobenius series, Takahashi et al. [4] obtained the solution of free vibration of conical shells. Sundarasivarao and Ganesan [5] analyzed a conical shell under pressure using the finite element method. Based on bending theory, Tavares [6] determined the stresses, strains, and displacements of a thin conical shell with constant thickness and axisymmetric load by the construction of a Green’s function. Cui et al. [7] used a new transformation for solving the governing equations of thin conical shells. The obtained equation is an ordinary differential equation with complex coefficients. Wu and Chiu [8] investigated thermally induced dynamic

References

[1]  I. Mirsky and G. Hermann, “Axially motions of thick cylindrical shells,” Journal of Applied Mechanics, vol. 25, pp. 97–102, 1958.
[2]  G. F. Hausenbauer and G. C. Lee, “Stresses in thick-walled conical shells,” Nuclear Engineering and Design, vol. 3, no. 3, pp. 394–401, 1966.
[3]  I. S. Raju, G. V. Rao, B. P. Rao, and J. Venkataramana, “A conical shell finite element,” Computers and Structures, vol. 4, no. 4, pp. 901–915, 1974.
[4]  S. Takahashi, K. Suzuki, and T. Kosawada, “Vibrations of conical shells with variable thickness,” Bulletin of the JSME-Japan Society of Mechanical Engineers, vol. 29, no. 258, pp. 4306–4311, 1986.
[5]  B. S. K. Sundarasivarao and N. Ganesan, “Deformation of varying thickness of conical shells subjected to axisymmetric loading with various end conditions,” Engineering Fracture Mechanics, vol. 39, no. 6, pp. 1003–1010, 1991.
[6]  S. A. Tavares, “Thin conical shells with constant thickness and under axisymmetric load,” Computers and Structures, vol. 60, no. 6, pp. 895–921, 1996.
[7]  W. Cui, J. Pei, and W. Zhang, “Simple and accurate solution for calculating stresses in conical shells,” Computers and Structures, vol. 79, no. 3, pp. 265–279, 2001.
[8]  C.-P. Wu and S.-J. Chiu, “Thermally induced dynamic instability of laminated composite conical shells,” International Journal of Solids and Structures, vol. 39, no. 11, pp. 3001–3021, 2002.
[9]  I. F. Pinto Correia, C. M. Mota Soares, C. A. Mota Soares, and J. Herskovits, “Analysis of laminated conical shell structures using higher order models,” Composite Structures, vol. 62, no. 3-4, pp. 383–390, 2003.
[10]  K. C. Jane and Y. H. Wu, “A generalized thermoelasticity problem of multilayered conical shells,” International Journal of Solids and Structures, vol. 41, no. 9-10, pp. 2205–2233, 2004.
[11]  C.-P. Wu, Y.-F. Pu, and Y.-H. Tsai, “Asymptotic solutions of axisymmetric laminated conical shells,” Thin-Walled Structures, vol. 43, no. 10, pp. 1589–1614, 2005.
[12]  H. R. S. Eipakchi, E. Khadem, and G. H. S. Rahimi, “Axisymmetric stress analysis of a thick conical shell with varying thickness under nonuniform internal pressure,” Journal of Engineering Mechanics, vol. 134, no. 8, pp. 601–610, 2008.
[13]  M. Ghannad, M. Z. Nejad, and G. H. Rahimi, “Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory,” Mechanika, vol. 79, no. 5, pp. 13–20, 2009.
[14]  M. Z. Nejad, G. H. Rahimi, and M. Ghannad, “Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system,” Mechanika, vol. 77, no. 3, pp. 18–26, 2009.
[15]  A. V. Borisov, “Elastic analysis of multilayered thick-walled spheres under external load,” Mechanika, vol. 84, no. 4, pp. 28–32, 2010.
[16]  H. R. Eipakchi, “Third-order shear deformation theory for stress analysis of a thick conical shell under pressure,” Journal of Mechanics of Materials and Structures, vol. 5, no. 1, pp. 1–17, 2010.
[17]  K. Asemi, M. Akhlaghi, M. Salehi, and S. K. Hosseini Zad, “Analysis of functionally graded thick truncated cone with finite length under hydrostatic internal pressure,” Archive of Applied Mechanics, vol. 81, no. 8, pp. 1063–1074, 2011.
[18]  M. Ghannad and M. Zamani Nejad, “Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends,” Mechanika, vol. 85, no. 5, pp. 11–18, 2010.
[19]  F. Shadmehri, S. V. Hoa, and M. Hojjati, “Buckling of conical composite shells,” Composite Structures, vol. 94, no. 2, pp. 787–792, 2012.
[20]  O. Civalek, “Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory,” Composites Part B-Engineering, vol. 45, pp. 1001–1009, 2013.
[21]  M. Z. Nejad, M. Jabbari, and M. Ghannad, “A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers,” The Scientific World Journal, vol. 2014, Article ID 932743, 10 pages, 2014.
[22]  S. Vlachoutsis, “Shear correction factors for plates and shells,” International Journal for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1537–1552, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133