This work examines how vapor-deposited coating of DLC (partially diamond) on stainless steel 304 substrate is affected by the sound vibration. For this, a specially designed chemical vapor deposition (thermal CVD and hot filament) apparatus having facility of generating sound vibration at different frequency is fabricated. A coating of DLC (partially diamond) has been deposited on the substrate, and the characterization of the coating has been done by SEM, EDX, and XRD. The coating of carbon is identified by EDX, and the allotropic forms of graphite and diamond peaks of carbon are found by XRD analysis. By SEM analysis, it is found that the microstructures of deposited coatings are more compact and smoother under vibration than those in absence of vibration. The experiments were conducted under different ranges of vibration including sonic and ultrasonic range. Studies have shown that the growth rate of deposited coating on a unit area is higher under vibration than that in absence of vibration. It is found that deposition rate varies with the distance between substrate and activation heater and frequency of vibration. The deposition rate does not vary significantly with the change of frequency in the sonic range. The amount of deposition under ultrasonic vibration increases significantly with the frequency of vibration upto 5-6?mm distance between substrate and activation heater. Within this distance, the difference of deposition rate under vibration and without vibration conditions increases almost linearly with the increase of frequency of vibration. Beyond this distance, the effect of frequency on deposition rate becomes almost constant. In addition, the higher the distance, the less is the effectiveness of frequency of vibration on the deposition rate in that range. The deposition rate increases due to the extra vibration of sound added to the system which may enhance the activation energy by increasing its kinetic energy. The experimental results are compared with those available in the literature, and physical explanations are provided. 1. Introduction Chemical vapor deposition (CVD) is a process in which a solid material formed from a vapor phase by chemical reaction is deposited on a heated substrate. The deposited material is obtained as a coating of multicrystal layer. The controlling parameters in CVD process are surface kinetics, mass transport in the vapor, thermodynamics of the system, chemistry of the reaction and processing parameters like temperature and pressure. The deposition rate which is the prime limiting factor in a CVD process
References
[1]
H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes, Norwich, NY, USA, 2nd edition, 1999.
[2]
R. F. Bunshah, Handbook of Deposition Technologies for Films and Coatings, Noyes, NJ, USA, 2nd edition, 1994.
[3]
L. L. Regel and W. R. Wilcox, “Diamond film deposition by chemical vapor transport,” Acta Astronautica, vol. 48, no. 2-3, pp. 129–144, 2001.
[4]
C. H. M. Van Der Werf, H. D. Goldbach, J. L?ffler et al., “Silicon nitride at high deposition rate by Hot Wire Chemical Vapor Deposition as passivating and antireflection layer on multicrystalline silicon solar cells,” Thin Solid Films, vol. 501, no. 1-2, pp. 51–54, 2006.
[5]
E. J. Corat and D. G. Goodwin, “Temperature dependence of species concentrations near the substrate during diamond chemical vapor deposition,” Journal of Applied Physics, vol. 74, no. 3, pp. 2021–2029, 1993.
[6]
M. C. McMaster, W. L. Hsu, M. E. Coltrin, D. S. Dandy, and C. Fox, “Dependence of the gas composition in a microwave plasma-assisted diamond chemical vapor deposition reactor on the inlet carbon source: CH4 versus C2H2,” Diamond and Related Materials, vol. 4, no. 7, pp. 1000–1008, 1995.
[7]
Y. Fu, C. Q. Sun, H. Du, and B. Yan, “From diamond to crystalline silicon carbonitride: Effect of introduction of nitrogen in CH4/H2 gas mixture using MW-PECVD,” Surface and Coatings Technology, vol. 160, no. 2-3, pp. 165–172, 2002.
[8]
L. L. Regel and W. R. Wilcox, “Deposition of diamond on graphite and carbon felt from graphite heated in hydrogen at low pressure,” Journal of Materials Science Letters, vol. 19, no. 6, pp. 455–457, 2000.
[9]
W. Yuan, M. Banan, L. L. Regel, and W. R. Wilcox, “The effect of vertical vibration of the ampoule on the directional solidification of InSbGaSb alloy,” Journal of Crystal Growth, vol. 151, no. 3-4, pp. 235–242, 1995.
[10]
L. Chowa, D. Zhoub, A. Hussainb, et al., “Chemical vapor deposition of novel carbon materials,” Thin Solid Films, vol. 368, pp. 193–197, 2000.
[11]
D. S. Dandy and M. E. Coltrin, “Relationship between diamond growth rate and hydrocarbon injector location in direct-current arcjet reactors,” Applied Physics Letters, vol. 66, no. 3, 3 pages, 1995.
[12]
S. Kumar, P. N. Dixit, D. Sarangi, and R. Bhattacharyya, “High rate deposition of diamond like carbon films by very high frequency plasma enhanced chemical vapor deposition at 100?MHz,” Journal of Applied Physics, vol. 93, no. 10, pp. 6361–6369, 2003.
[13]
S. H. Yeo, J. H. Choo, and K. H. A. Sim, “On the effects of ultrasonic vibrations on localized electrochemical deposition,” Journal of Micromechanics and Microengineering, vol. 12, no. 3, pp. 271–279, 2002.
[14]
T. Burakowski and T. Wierzchon, Surface Engineering of Metal, CRC Press, New York, NY, USA, 2000.
[15]
B. Bhushan, Principles and Applications of Tribology, A Wiley- Interscience, New York, NY, USA, 1999.
[16]
J. Oscik, Adsorption, E. Horwood Lim, Chichester, UK, 1982.
[17]
F. C. Tompkins, Chemisorption of Gases on Metals, PWN, Warsaw, Poland, 1985.