全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Applicability of Scaling Approach for Analysis of Pyrolysis and Gasification of Porous Structures Composed of Solid Fuel Particles

DOI: 10.5402/2012/207464

Full-Text   Cite this paper   Add to My Lib

Abstract:

Experimental research on the pyrolysis and gasification of randomly packed straw pellets was conducted with an emphasis on the reactive properties of the shrinking porous structure of the pellets. The apparent kinetics of such pyrolysis was approximated by the random pore, grain, and volumetric models. The best approximation results were obtained with the grain and random pore models. The self-organized oscillations of the pellet conversion rate during pyrolysis were observed. Two complementary explanations of the phenomenon are proposed. 1. Introduction Old and modern gasification reactors are fed by various types of fuel, including raw biomass and biomass in pelletized form. Wood chips and chunks of different forms and sizes are also applied, along with a pulverized form of pellets. As the size of a biomass particle decreases, its pyrolysis and gasification occur more quickly. Thus, it may be beneficial for the conditions of industrial scale gasification to feed reactors with a pulverized fuel. However, if one considers a fixed-bed type reactor, the small particles of pulverized fuel may be partially sintered during pyrolysis. The resulting char will have a completely different permeability for gasification agents than that of the pulverized particles in their initially loose state. The release of tars and oils during pyrolysis may also substantially decrease the permeability of the main biomass stock for gasification agents. The bubbling of the particles in fluidized bed-type reactors is among the alternatives that avoid these drawbacks of fixed-bed type reactors. The bubbling, however, has its own disadvantages; for example, it is necessary to prepare particles with a narrow size distribution, and a relatively high flow of a gasification agent is required to maintain bubbling of the particles. Considering these issues and the additional energy and processing costs required for fuel pulverization, exploiters and developers of industrial scale gasifiers and gasifiers of the types described in [1] may prefer the application of raw biomass, wood pellets, chunks, and chips instead of their pulverized form. Despite this choice, the developers and exploiters of reactors should consider the dependence of gasification regimes on the evolution of porous structures that are created in the bed. To achieve the optimal regimes, it should be possible to predict the regimes of both pyrolysis and char gasification in a packed bed as they depend on the temperature, gasification agent, and fuel feeding rates. The evolution of porous structures, from the delivery of

References

[1]  B. N. Baliga, S. Dasappa, U. Shrinivasa, and H. S. Mukunda, “Gasifier-based power generation: technology and economics,” Sadhana, vol. 18, no. 1, pp. 57–75, 1993.
[2]  S. K. Bhatia and D. D. Perlummer, “A random pore model for fluid-solid reactions: I. Isothermal, kinetic control,” AIChE Journal, vol. 26, no. 3, pp. 379–385, 1980.
[3]  S. K. Bhatia and D. D. Perlmutter, “A random pore model for fluid-solid reactions: II. Diffusion and transport effects,” AIChE Journal, vol. 27, no. 2, pp. 247–254, 1981.
[4]  J. Szekely and J. W. Evans, “A structural model for gas-solid reactions with a moving boundary,” Chemical Engineering Science, vol. 25, no. 6, pp. 1091–1107, 1970.
[5]  J. Szekely and J. W. Evans, “A structural model for gas-solid reactions with a moving boundary-II. The effect of grain size, porosity and temperature on the reaction of porous pellets,” Chemical Engineering Science, vol. 26, no. 11, pp. 1901–1913, 1971.
[6]  J. Fermoso, B. Arias, C. Pevida, M. G. Plaza, F. Rubiera, and J. J. Pis, “Kinetic models comparison for steam gasification of different nature fuel chars,” Journal of Thermal Analysis and Calorimetry, vol. 91, no. 3, pp. 779–786, 2008.
[7]  K. Raghunathan and R. Y. K. Yang, “Unification of coal gasification data and its applications,” Industrial and Engineering Chemistry Research, vol. 28, no. 5, pp. 518–523, 1989.
[8]  T. Yamashita, Y. Fujii, Y. Morozumi, H. Aoki, and T. Miura, “Modeling of gasification and fragmentation behavior of char particles having complicated structures,” Combustion and Flame, vol. 146, no. 1-2, pp. 85–94, 2006.
[9]  H. Wu, K. Yip, F. Tian, Z. Xie, and C. Z. Li, “Evolution of char structure during the steam gasification of biochars produced from the pyrolysis of various mallee biomass components,” Industrial and Engineering Chemistry Research, vol. 48, no. 23, pp. 10431–10438, 2009.
[10]  B. H. Song and S. D. Kim, “Catalytic activity of alkali and iron salt mixtures for steam-char gasification,” Fuel, vol. 72, no. 6, pp. 797–803, 1993.
[11]  X. Wang, H. Zhang, and L. Zheng, “Novel modeling tool for fixed-bed biomass gasification using high-temperature air,” Industrial and Engineering Chemistry Research, vol. 46, no. 26, pp. 8852–8856, 2007.
[12]  R. Gutfraind and M. Sheintuch, “Scaling approach to study diffusion and reaction processes on fractal catalysts,” Chemical Engineering Science, vol. 47, no. 17-18, pp. 4425–4433, 1992.
[13]  L. Nottale, “Scale relativity and fractal space-time: theory and applications,” in Proceedings of the 1st International Conference on the Evolution and Development of the Universe, pp. 101–152, Foundation of Science, Paris, France, 2008.
[14]  L. Notalle, “Generalized quantum potentials,” Journal of Physics A, vol. 92, no. 10, pp. 2068–2074, 2011.
[15]  A. Alevanau, I. Ahmed, A. K. Gupta, W. Yang, and W. Blasiak, “Parameters of high temperature steam gasification of original and pulverised wood pellets,” Fuel Processing Technology, vol. 92, no. 10, pp. 2068–2074, 2011.
[16]  J. Feder, Fractals, Plenum Press, New York, NY, USA, 1991.
[17]  H. Haken, Synergetics, an Introduction: nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology, Springer, 3rd edition, 1983.
[18]  D. L. Pyle and C. A. Zaror, “Heat transfer and kinetics in the low temperature pyrolysis of solids,” Chemical Engineering Science, vol. 39, no. 1, pp. 147–158, 1984.
[19]  P. Donaj, W. Yang, and W. Blasiak, “Conversion of industrialy processed biomas waste into value-added products using high temperature agents,” in Proceedings of the International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors (IT3/HWC '11), Jacksonville, Fla, USA, 2011.
[20]  A. Alevanau, E. Kantarelis, W. Yang, and W. Blasiak, “Study of the effects of gaseous micro-expansion on the efficiency of convective heat transfer during pyrolysis,” Submitted to Fuel Processing Technology.
[21]  S. Frigerio, H. Thunman, B. Leckner, and S. Hermansson, “Estimation of gas phase mixing in packed beds,” Combustion and Flame, vol. 153, no. 1-2, pp. 137–148, 2008.
[22]  S. Link, S. Arvelakis, M. Hupa, P. Yrjas, I. Külaots, and A. Paist, “Reactivity of the biomass chars originating from reed, douglas fir, and pine,” Energy and Fuels, vol. 24, no. 12, pp. 6533–6539, 2010.
[23]  C. K. Lee, R. F. Chaiken, and J. M. Singer, “Charring pyrolysis of wood in fires by laser simulation,” Symposium (International) on Combustion, vol. 16, no. 1, pp. 1459–1470, 1977.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133