全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Nonlinear Shooting Method and Its Application to Nonlinear Rayleigh-Bénard Convection

DOI: 10.1155/2013/650208

Full-Text   Cite this paper   Add to My Lib

Abstract:

The simple shooting method is revisited in order to solve nonlinear two-point BVP numerically. The BVP of the type is considered where components of are known at one of the boundaries and components of are specified at the other boundary. The map is assumed to be smooth and satisfies the Lipschitz condition. The two-point BVP is transformed into a system of nonlinear algebraic equations in several variables which, is solved numerically using the Newton method. Unlike the one-dimensional case, the Newton method does not always have quadratic convergence in general. However, we prove that the rate of convergence of the Newton iterative scheme associated with the BVPs of present type is at least quadratic. This indeed justifies and generalizes the shooting method of Ha (2001) to the BVPs arising in the higher order nonlinear ODEs. With at least quadratic convergence of Newton's method, an explicit application in solving nonlinear Rayleigh-Bénard convection in a horizontal fluid layer heated from the below is discussed where rapid convergence in nonlinear shooting essentially plays an important role. 1. Introduction Let ,?? , be a vector valued function defined by , where each map , , is smooth over the interval . We consider the following vector differential equation satisfied by : Throughout, the map is assumed to be smooth and satisfying the Lipschitz condition on a closed rectangle with a Lipschitz constant s.t. for all?? and ; furthermore, the components of are assumed to satisfy initial conditions at first boundary given by and -conditions at the other boundary which are given by where is a permutation of the symmetric group . Equations (1)–(4) lead to a two-point boundary value problem whose solution is not known a priori at either of the boundaries. Such BVPs are a common object of study in mathematics, physics, engineering, stochastic analysis, and optimization. In general, it is not possible to solve these BVPs analytically, and one needs to look for their numerical solutions in order to unfold the inherent dynamics. To do so, the vector differential equation may be reduced to a set of nonlinear algebraic equations by approximating the solution with a (finite) Galerkin expansion in terms of a suitably chosen set of orthogonal functions already satisfying the conditions of the BVP in hand. The resulting set of the nonlinear algebraic equations is solved numerically for the unknown Galerkin coefficients using iterative methods such as the Newton-Raphson scheme. Despite its general applicability, the Galerkin method becomes handy as the number of

References

[1]  H. B. Keller, Numerical Solution of Two Point Boundary Value problems, SIAM, Philadelphia, Pa, USA, 1976.
[2]  A. Granas, R. B. Guenther, and J. W. Lee, “The shooting method for the numerical solution of a class of nonlinear boundary value problems,” SIAM Journal on Numerical Analysis, vol. 16, no. 5, pp. 828–836, 1979.
[3]  R. M. M. Mattheij and G. W. M. Staarink, “On optimal shooting intervals,” Mathematics of Computation, vol. 42, no. 165, pp. 25–40, 1984.
[4]  J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, vol. 12 of Texts in Applied Mathematics, Springer, New York, NY, USA, 2nd edition, 1993.
[5]  M. E. Kramer and R. M. M. Mattheij, “Application of global methods in parallel shooting,” SIAM Journal on Numerical Analysis, vol. 30, no. 6, pp. 1723–1739, 1993.
[6]  A.-M. Wazwaz, “Approximate solutions to boundary value problems of higher order by the modified decomposition method,” Computers & Mathematics with Applications, vol. 40, no. 6-7, pp. 679–691, 2000.
[7]  S. N. Ha, “A nonlinear shooting method for two-point boundary value problems,” Computers & Mathematics with Applications, vol. 42, no. 10-11, pp. 1411–1420, 2001.
[8]  A. M. Wazwaz, “A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems,” Computers & Mathematics with Applications, vol. 41, no. 10-11, pp. 1237–1244, 2001.
[9]  B. S. Attili and M. I. Syam, “Efficient shooting method for solving two point boundary value problems,” Chaos, Solitons and Fractals, vol. 35, no. 5, pp. 895–903, 2008.
[10]  C.-S. Liu, “Cone of non-linear dynamical system and group preserving schemes,” International Journal of Non-Linear Mechanics, vol. 36, no. 7, pp. 1047–1068, 2001.
[11]  C. S. Liu, “The Lie-group shooting method for boundary-layer problms with suction/injection/reverse flow conditions for power-law fluids,” International Journal of Non-Linear Mechanics, vol. 46, pp. 1001–1008, 2011.
[12]  G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 3rd edition, 1978.
[13]  J. M. Ortega, “The Newton-Kantorovich Theorem,” The American Mathematical Monthly, vol. 75, pp. 658–660, 1968.
[14]  R. A. Tapia, “Classroom notes: the Kantorovich theorem for Newton's method,” The American Mathematical Monthly, vol. 78, no. 4, pp. 389–392, 1971.
[15]  L. B. Rall, “A note on the convergence of Newton's method,” SIAM Journal on Numerical Analysis, vol. 11, pp. 34–36, 1974.
[16]  W. B. Gragg and R. A. Tapia, “Optimal error bounds for the Newton-Kantorovich theorem,” SIAM Journal on Numerical Analysis, vol. 11, pp. 10–13, 1974.
[17]  S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, The International Series of Monographs on Physics, Clarendon Press, Oxford, UK, 1961.
[18]  P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge Mathematical Library, Cambridge University Press, Cambridge, UK, 2nd edition, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133