全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Note on the Unsteady Incompressible MHD Fluid Flow with Slip Conditions and Porous Walls

DOI: 10.1155/2013/705296

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work is concerned with the influence of uniform suction or injection on flow and heat transfer analysis of unsteady incompressible magnetohydrodynamic (MHD) fluid with slip conditions. The resulting unsteady problem for velocity and heat transfer is solved by means of Laplace transform. The characteristics of the transient velocity, overall transient velocity, steady state velocity and heat transfer at the walls are analyzed and discussed. Graphical results reveal that the magnetic field, slip parameter, and suction (injection) have significant influences on the velocity, and temperature distributions, which also changes the heat transfer behaviors at the two plates. The results of Fang (2004) are also recovered by keeping magnetic field and slip parameter absent. 1. Introduction Navier-Stokes equations are the basic equations of fluid mechanics. Exact solutions of Navier-Stokes equations are rare due to their inherent nonlinearity. Exact solutions are important because they serve as accuracy checks for numerical solutions. Complete integration of these equations is done by computer techniques, but the accuracy of the results can be established only by comparison with exact solutions. In the literature, there are a large number of Newtonian fluid flows for which exact solutions are possible [1–6]. The effects of transverse magnetic field on the flow of an electrically conducting viscous fluid have been studied extensively in view of numerous applications to astrophysical, geophysical, and engineering problems [7–15]. If the working fluid contains concentrated suspensions, then the wall slip can occur [16]. Khaled and Vafai [3] studied the effect of the slip on Stokes and Couette flows due to an oscillating wall. However, the literature lacks studies that take into account the possibility of fluid slippage at the walls. Applications of these problems appear in microchannels or nanochannels and in applications where a thin film of light oil is attached to the moving plates or when the surface is coated with special coating such as a thick monolayer of hydrophobic octadecyltrichlorosilane [17]. Yu and Ameel [18] imposed nonlinear slip boundary conditions on flow in rectangular microchannels. Erdogan [6] studied deeply the solution to the Stokes problem under nonslip conditions at the wall. Ayub and Zaman [19] studied the effects of suction and blowing for orthogonal flow impinging on a wall. Khan et al. [20] discussed the flow of Sisko fluid through a porous medium. Ariel et al. [21] considered the flow of elasticoviscous fluid with partial slip.

References

[1]  T. Fang, “A note on the incompressible couette flow with porous walls,” International Communications in Heat and Mass Transfer, vol. 31, no. 1, pp. 31–41, 2004.
[2]  H. Schlichting and K. Gersten, Boundary Layer Theory, Springer, Berlin, Germany, 8th edition, 2000.
[3]  A. R. A. Khaled and K. Vafai, “The effect of the slip condition on Stokes and Couette flows due to an oscillating wall: exact solutions,” International Journal of Non-Linear Mechanics, vol. 39, no. 5, pp. 795–809, 2004.
[4]  T. Hayat, M. Khan, A. M. Siddiqui, and S. Asghar, “Transient flows of a second grade fluid,” International Journal of Non-Linear Mechanics, vol. 39, no. 10, pp. 1621–1633, 2004.
[5]  M. Ahmad, H. Zaman, and N. Rehman, “Effects of Hall current on unsteady MHD flows of a second grade fluid,” Central European Journal of Physics, vol. 8, no. 3, pp. 422–431, 2010.
[6]  M. E. Erdogan, “Note on an unsteady flow of a viscous fluid due to an oscillating plane wall,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 1–6, 2000.
[7]  K. R. Crammer and S. I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists, McGraw-Hill, New York, NY, USA, 1973.
[8]  M. Ayub, H. Zaman, and M. Ahmad, “Series solution of hydromagnetic flow and heat transfer with Hall effect in a second grade fluid over a stretching sheet,” Central European Journal of Physics, vol. 8, no. 1, pp. 135–149, 2010.
[9]  T. Hayat, T. Javed, and Z. Abbas, “MHD flow of a micropolar fluid near a stagnation-point towards a non-linear stretching surface,” Nonlinear Analysis: Real World Applications, vol. 10, no. 3, pp. 1514–1526, 2009.
[10]  T. Hayat, Z. Abbas, and T. Javed, “MHD stagnation point flow and heat transfer over a permeable surface through a porous space,” Journal of Porous Media, vol. 12, no. 2, pp. 183–195, 2009.
[11]  S. Asghar, M. Khan, and T. Hayat, “Magnetohydrodynamic transient flows of a non-newtonian fluid,” International Journal of Non-Linear Mechanics, vol. 40, no. 5, pp. 589–601, 2005.
[12]  M. Khan, S. Hyder Ali, T. Hayat, and C. Fetecau, “MHD flows of a second grade fluid between two side walls perpendicular to a plate through a porous medium,” International Journal of Non-Linear Mechanics, vol. 43, no. 4, pp. 302–319, 2008.
[13]  M. Khan, S. Asghar, and T. Hayat, “Hall effect on the pipe flow of a Burgers' fluid: an exact solution,” Nonlinear Analysis: Real World Applications, vol. 10, no. 2, pp. 974–979, 2009.
[14]  R. Cortell, “MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species,” Chemical Engineering and Processing, vol. 46, no. 8, pp. 721–728, 2007.
[15]  T. Hayat, H. Zaman, and M. Ayub, “Analytical solution of hydromagnetic flow with Hall effect over a surface stretching with a power-law velocity,” Numerical Methods for Partial Differential Equations, vol. 27, no. 4, pp. 937–959, 2011.
[16]  F. Soltani and ü. Yilmazer, “Slip velocity and slip layer thickness in flow of concentrated suspensions,” Journal of Applied Polymer Science, vol. 70, no. 3, pp. 515–522, 1998.
[17]  C. Derek, D. C. Tretheway, and C. D. Meinhart, “Apparent fluid slip at hydrophobic microchannel walls,” Physics of Fluids, vol. 14, no. 3, pp. L9–L12, 2002.
[18]  S. Yu and T. A. Ameel, “Slip-flow heat transfer in rectangular microchannels,” International Journal of Heat and Mass Transfer, vol. 44, no. 22, pp. 4225–4234, 2001.
[19]  M. Ayub and H. Zaman, “Analytical solution of orthogonal flow impinging on a wall with suction or blowing,” Journal of Basic & Applied Sciences, vol. 6, no. 2, pp. 93–97, 2010.
[20]  M. Khan, Z. Abbas, and T. Hayat, “Analytic solution for flow of Sisko fluid through a porous medium,” Transport in Porous Media, vol. 71, no. 1, pp. 23–37, 2008.
[21]  P. D. Ariel, T. Hayat, and S. Asghar, “The flow of an elastico-viscous fluid past a stretching sheet with partial slip,” Acta Mechanica, vol. 187, no. 1–4, pp. 29–35, 2006.
[22]  A. Raptis, C. Perdikis, and G. Tzivanidis, “Free convection flow through a porous medium bounded by a vertical surface,” Journal of Physics D, vol. 14, no. 7, article 001, pp. L99–L102, 1981.
[23]  A. Raptis, G. Tzivanidis, and N. Kafousias, “Free convection and mass transfer flow through a porous medium bounded by an infinite vertical limiting surface with constant suction,” Letters in Heat and Mass Transfer, vol. 8, no. 5, pp. 417–424, 1981.
[24]  A. Raptis, N. Kafousios, and C. Massalas, “Free convection and mass transfer flow through a porous medium bounded by an infinite vertical porous plate with constant heat flux,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 62, pp. 489–491, 1982.
[25]  A. A. Raptis, “Unsteady free convective flow through a porous medium,” International Journal of Engineering Science, vol. 21, no. 4, pp. 345–348, 1983.
[26]  R. Penton, “The transient for Stokes oscillating plane: a solution in terms of tabulated functions,” Journal of Fluid Mechanics, vol. 31, pp. 819–825, 1968.
[27]  G. E. Roberts and H. Kaufman, Tables of Laplace Transforms, WB Saunders, Philadelphia, Pa, USA, 1966.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133