全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Time-Delayed Interactions in Networks of Self-Adapting Hopf Oscillators

DOI: 10.1155/2013/816353

Full-Text   Cite this paper   Add to My Lib

Abstract:

A network of coupled limit cycle oscillators with delayed interactions is considered. The parameters characterizing the oscillator’s frequency and limit cycle are allowed to self-adapt. Adaptation is due to time-delayed state variables that mutually interact via a network. The self-adaptive mechanisms ultimately drive all coupled oscillators to a consensual cyclostationary state, where the values of the parameters are identical for all local systems. They are analytically expressible. The interplay between the spectral properties of the coupling matrix and the time delays determines the conditions for which convergence towards a consensual state takes place. Once reached, this consensual state subsists even if interactions are removed. In our class of models, the consensual values of the parameters depend neither on the delays nor on the network’s topologies. The farther back you can look, the farther forward you are likely to see Winston Churchill 1. Introduction The harmonic excitation of an elementary-damped harmonic oscillator with , , and produces the well-known asymptotic response (c.f. [1]): where and depend on the control parameters , , and . By construction, the oscillating environment here materialized by the input is totally insensitive to the oscillator , implying that in (1) is slaved by the external forcing. The next stage of complexity is to replace the harmonic oscillator in (1) by a Lienard system: where is a nonlinear controller. In absence of external excitation in (3) (i.e., when ), we assume to asymptotically drive the orbits towards a stable limit cycle which is independent of the initial conditions—the paradigmatic illustration being here the Van der Pol oscillator. When and for a suitably selected range of parameters, the time asymptotic response of (3) can be qualitatively written as (c.f. [2, 3]) with being a synchronized signal with the same periodicity as the environment (i.e., ). By construction, the external forcing in (3) is, as before, insensitive to the Lienard oscillator. In the resulting synchronized regime, the oscillator is caught by the external excitation—in other words, the system adjusts itself to the environment but the environment remains insensible to the system. Observe that the dynamical response given by (4) only subsists as long as acts on the system. That is, as soon as the environment effect is removed (i.e., in (3)), the system (i.e., the limit cycle oscillator), after a transient time, recovers its original behavior—converges towards its limit cycle. In our present paper, we will extend the previous

References

[1]  A. A. Shabana, Theory of Vibration: An Introduction, Mechanical Engineering Series, Springer, New York, NY, USA, 1996.
[2]  M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns, Advanced Texts in Physics, Springer, New York, NY, USA, 2003.
[3]  J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1990.
[4]  J. Buchli, Ijspeert, and A. J. A. Simple, “Adaptive locomotion toy-system,” in Proceedings of the 8th International Conference on the Simulation of Adaptive Behavior (SAB'04), 2004.
[5]  L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic Hebbian learning in adaptive frequency oscillators,” Physica D, vol. 216, no. 2, pp. 269–281, 2006.
[6]  R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M. C. Carrozza, and A. J. Ijspeert, “Human-robot synchrony: flexible assistance using adaptive oscillators,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 1001–1012, 2011.
[7]  J. Rodriguez and M. O. Hongler, “Networks of mixed canonical-dissipative systems and dynamic hebbian learning,” International Journal of Computational Intelligence Systems, vol. 2, no. 2, pp. 140–146, 2009.
[8]  J. Rodriguez and M. O. Hongler, “Networks of limit cycle oscillators with parametric learning capability,” in Recent Advances in Nonlinear Dynamics and Synchronization: Theory and Applications, K. Kyamakya, W. A. Halang, H. Unger, J. C. Chedjou, N. F. Rulkov, and Z. Li, Eds., pp. 17–48, Springer, Berlin, Germany, 2009.
[9]  S. Steingrube, M. Timme, F. W?rg?tter, and P. Manoonpong, “Self-organized adaptation of a simple neural circuit enables complex robot behaviour,” Nature Physics, vol. 6, no. 3, pp. 224–230, 2010.
[10]  A. A. Selivanov, J. Lehnert, T. Dahms, P. H?vel, A. L. Fradkov, and E. Sch?ll, “Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators,” Physical Review E, vol. 85, no. 1, Article ID 016201, 8 pages, 2012.
[11]  S. Gerschgorin, “über die Abgrenzung der Eigenwerte einer Matrix,” IzvestIya AkademII Nauk USSR, OtdelenIe MatematIcheskIh I estestvennIh Nauk, vol. 7, pp. 749–754, 1931.
[12]  J. Rodriguez, Networks of self-adaptive dynamical systems [Ph.D. thesis], Ecole Polythechnique Fédérale de Lausanne, 2011.
[13]  M. K. S. Yeung and S. H. Strogatz, “Time delay in the Kuramoto model of coupled oscillators,” Physical Review Letters, vol. 82, no. 3, pp. 648–651, 1999.
[14]  E. Montbrió, D. Pazó, and J. Schmidt, “Time delay in the Kuramoto model with bimodal frequency distribution,” Physical Review E, vol. 74, no. 5, Article ID 056201, 5 pages, 2006.
[15]  R. Bellman and K. L. Cooke, Delay Differential Equations with Applications in Populations Dynamics, Academic Press, New York, NY, USA, 1963.
[16]  B. Cahlon and D. Schmidt, “Stability criteria for certain second order delay differential equations,” Dynamics of Continuous, Discrete & Impulsive Systems, vol. 10, no. 4, pp. 593–621, 2003.
[17]  J. Rodriguez, M. O. Hongler, and P. Blanchard, “Self-adaptive attractor-shaping for oscillators networks,” in Proceedings of the Joint INDS'11 & ISTET'11—3rd International Workshop on nonlinear Dynamics and Synchronization and 6th International Symposium on Theoretical Electrical Engineering, 2011.
[18]  Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1993.
[19]  J. Han, M. Li, and L. Guo, “Soft control on collective behavior of a group of autonomous agents by a shill agent,” Journal of Systems Science & Complexity, vol. 19, no. 1, pp. 54–62, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133