全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Honesty in Nonlocal and Discrete Fragmentation Dynamics in Size and Random Position

DOI: 10.1155/2013/908753

Full-Text   Cite this paper   Add to My Lib

Abstract:

A discrete initial-value problem describing multiple fragmentation processes, where the fragmentation rate is size and position dependent and where new particles are spatially randomly distributed according to some probabilistic law, is investigated by means of parameter-dependent operators together with the theory of substochastic semigroups with a parameter. The existence of semigroups is established for each parameter and “glued” together so as to obtain a semigroup to the full space. Under certain conditions on each fragmentation rate, we used Kato’s Theorem in to show the existence of the generator and we provide sufficient conditions for honesty. 1. Introduction The process of fragmentation of clusters occurs in numerous domains of pure and applied sciences, such as the depolymerization, the rock fractures, and break of droplets. The fragmentation rate can be size and position dependent, and new particles resulting from the fragmentation are spatially randomly distributed according to some probability density. When it is supposed that every group of size (one -group) in a system of particles clusters consists of identical fundamental units (monomers), then the mass of every group is simply a multiple positive integer of the mass of the monomer. We focus here on clusters that are discrete; that is, they consist of a finite number of elementary (unbreakable) particles which are assumed to be of unit mass. The state at a given time is the repartition at that time of all aggregates according to their size and their position . The evolution of such particle-mass-position distribution is given by an integrodifferential [1] equation as we will see in this paper. Before going farther let us review what have already been done. Various types of fragmentation equations have been comprehensively analyzed in numerous works (see, e.g., [2–9]). Conservative and nonconservative regimes for fragmentation equations have been thoroughly investigated, and, in particular, the breach of the mass conservation law (called shattering) has been attributed to a phase transition creating a dust of zero-size particles with nonzero mass, which are beyond the model resolution. Shattering can be interpreted from the probabilistic point of view as the explosion in the Markov process describing fragmentation [8, 10] and from an analytic point of view as dishonesty of the semigroup associated with the model [2, 7]. Kinetic-Type Models with Diffusion were investigated in [11] where the author showed that the diffusive part does not affect the breach of the conservation laws. But

References

[1]  J. Banasiak and W. Lamb, “The discrete fragmentation equation: semigroups, compactness and asynchronous exponential growth,” Kinetic and Related Models, vol. 5, no. 2, pp. 223–236, 2012.
[2]  J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer, London, UK, 2006.
[3]  J. Banasiak and W. Lamb, “On the application of substochastic semigroup theory to fragmentation models with mass loss,” Journal of Mathematical Analysis and Applications, vol. 284, no. 1, pp. 9–30, 2003.
[4]  R. M. Ziff and E. D. McGrady, “The kinetics of cluster fragmentation and depolymerisation,” Journal of Physics A, vol. 18, no. 15, pp. 3027–3037, 1985.
[5]  C. R. Garibotti and G. Spiga, “Boltzmann equation for inelastic scattering,” Journal of Physics A, vol. 27, no. 8, pp. 2709–2717, 1994.
[6]  A. Majorana and C. Milazzo, “Space homogeneous solutions of the linear semiconductor Boltzmann equation,” Journal of Mathematical Analysis and Applications, vol. 259, no. 2, pp. 609–629, 2001.
[7]  J. Banasiak, “On an extension of Kato-Voigt perturbation theorem for substochastic semigroups and its applications,” Taiwanese Journal of Mathematics, vol. 5, no. 1, pp. 169–191, 2001.
[8]  W. Wagner, “Explosion phenomena in stochastic coagulation-fragmentation models,” The Annals of Applied Probability, vol. 15, no. 3, pp. 2081–2112, 2005.
[9]  E. D. McGrady and R. M. Ziff, “‘Shattering’ transition in fragmentation,” Physical Review Letters, vol. 58, no. 9, pp. 892–895, 1987.
[10]  B. Haas, “Loss of mass in deterministic and random fragmentations,” Stochastic Processes and Their Applications, vol. 106, no. 2, pp. 245–277, 2003.
[11]  J. Banasiak, “Kinetic-type models with diffusion: conservative and nonconservative solutions,” Transport Theory and Statistical Physics, vol. 36, no. 1–3, pp. 43–65, 2007.
[12]  K. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer, Berlin, Germany, 2000.
[13]  E. Hille and R. S. Phillips, Functional Analysis and Semigroups, vol. 31 of Colloquium Publications, American Mathematical Society, Providence, RI, USA, 1957.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133