全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solutions to Dirichlet-Type Boundary Value Problems of Fractional Order in Banach Spaces

DOI: 10.1155/2013/967192

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider the boundary value problems with Dirichlet-type boundary conditions of nonlinear fractional differential equation in Banach space. The existence of the solution to the boundary value problems is established. Our analysis relies on the Sadovskii fixed point theorem. As an application, we give an example to demonstrate our results. 1. Introduction Fractional differential equations have been of great interest recently. It is caused both by the intensive development of the theory of fractional calculus itself and by the applications in various sciences, such as physics, mechanics, chemistry, and engineering, (e.g., [1–9]). Consequently, the fractional calculus and its applications in various fields of science and engineering have received much attention and have developed very rapidly. Jiang and Yuan [10], by using fixed point theorem on the cone, discussed the existence and multiplicity of solutions of the nonlinear fractional differential equation boundary value problem as follows: where is a real number and is standard Riemann-Liouville fractional derivative. The authors in [11] consider the same boundary value problem. They derived the corresponding Green function and obtained the existence of solutions of this problem. As far as we know, the nonlinear integer order differential equation for the Dirichlet boundary value problem has been studied extensively (e.g., [12–17]). However, only a few papers have dealt with the boundary value problem for fractional differential equation, especially, in Banach spaces. The authors in [18] studied the existence of positive solutions of second-order two-point boundary value problem as follows: in Banach spaces. The authors in [19], by using the M?nch fixed point theorems, obtained the same results. Motivated by the results mentioned above, we discuss the following boundary value problem (BVP for short): in Banach space , where is the zero element of , is a real number, is standard Riemann-Liouville fractional derivative, , and is continuous. We establish an existence result of BVP in Banach spaces. The technique relies on the properties of the Kuratowski noncompactness measure and and Sadovskii fixed point theorem. To the best of our knowledge, this is the first paper considering the existence of solutions to Dirichlet-type value problems of fractional order in Banach spaces. 2. Preliminaries For the convenience of the reader, we present here the necessary definitions and preliminary facts which are used throughout this paper. Definition 1 (see [1]). The Riemann-Liouville fractional integral of order of

References

[1]  S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993.
[2]  Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005.
[3]  M. A. Krasnosel'skii, Positive Solutions of Operator Equations, Noordhoff, Groningen, The Netherlands, 1964.
[4]  V. Lakshmikantham and A. S. Vatsala, “General uniqueness and monotone iterative technique for fractional differential equations,” Applied Mathematics Letters, vol. 21, no. 8, pp. 828–834, 2008.
[5]  X. Lin and D. Jiang, “Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations,” Journal of Mathematical Analysis and Applications, vol. 321, no. 2, pp. 501–514, 2006.
[6]  K. S. Miller and B. Ross, An Introdction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
[7]  I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999.
[8]  D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic, Dordrecht, The Netherlands, 1996.
[9]  V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, UK, 1981.
[10]  D. Jiang and C. Yuan, “The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 72, no. 2, pp. 710–719, 2010.
[11]  V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 69, no. 8, pp. 2677–2682, 2008.
[12]  Z. Wei, “Positive solution of singular Dirichlet boundary value problems for second order differential equation system,” Journal of Mathematical Analysis and Applications, vol. 328, no. 2, pp. 1255–1267, 2007.
[13]  X. Zhang, L. Liu, and Y. Wu, “Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 68, no. 1, pp. 97–108, 2008.
[14]  X. Xu, D. Jiang, and C. Yuan, “Multiple positive solutions to singular positone and semipositone Dirichlet-type boundary value problems of nonlinear fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 74, no. 16, pp. 5685–5696, 2011.
[15]  B. Liu, “Positive solutions of a nonlinear four-point boundary value problems in Banach spaces,” Journal of Mathematical Analysis and Applications, vol. 305, no. 1, pp. 253–276, 2005.
[16]  R. P. Agarwal, M. Meehan, and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, UK, 2001.
[17]  Y. Liu, “Boundary value problems for second order differential equations on unbounded domains in a Banach space,” Applied Mathematics and Computation, vol. 135, no. 2-3, pp. 569–584, 2003.
[18]  Y. S. Liu, “Positive solutions of boundary value problems for nonlinear singular differential equations in Banach spaces,” Acta Mathematica Sinica, vol. 47, no. 1, pp. 131–140, 2004.
[19]  Y. Cui and Y. Zou, “Positive solutions of nonlinear singular boundary value problems in abstract spaces,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 69, no. 1, pp. 287–294, 2008.
[20]  J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, New York, NY, USA, 1984.
[21]  D. J. Guo, Nonlinear Functional Analysis, Shandong Science and Technology Publishing House, Jinan, China, 1985.
[22]  H. Chen and P. Li, “Three-point boundary value problems for second-order ordinary differential equations in Banach spaces,” Computers & Mathematics with Applications, vol. 56, no. 7, pp. 1852–1860, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133