全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Existence of Positive Solutions for Fourth-Order Boundary Value Problems with Sign-Changing Nonlinear Terms

DOI: 10.1155/2013/349624

Full-Text   Cite this paper   Add to My Lib

Abstract:

the existence of positive solutions for a fourth-order boundary value problem with a sign-changing nonlinear term is investigated. By using Krasnoselskii’s fixed point theorem, sufficient conditions that guarantee the existence of at least one positive solution are obtained. An example is presented to illustrate the application of our main results. 1. Introduction In this paper, we consider the existence of positive solutions to the following fourth-order boundary value problem (BVP): where is a positive parameter, is continuous and may be singular at , and is Lebesgue integrable and has finitely many singularities in . Boundary value problems for ordinary differential equations play a very important role in both theory and applications. They are used to describe a large number of physical, biological, and chemical phenomena. The work of Timoshenko [1] on elasticity, the monograph by Soedel [2] on deformation of structures, and the work of Dulcska [3] on the effects of soil settlement are rich sources of such applications. There has been a great deal of research work on BVPs for second and higher order differential equations, and we cite as recent contributions the papers of Anderson and Davis [4], Baxley and Haywood [5], and Hao et al. [6]. For surveys of known results and additional references, we refer the readers to the monographs by Agarwal et al. [7, 8]. Many authors have studied the existence of positive solutions for fourth-order boundary value problems where the nonlinearity takes nonnegative values, see [9–13]. However, for problems with sign-changing nonlinearities, only a few studies have been reported. Owing to the importance of high order differential equations in physics, the existence and multiplicity of the solutions to such problems have been studied by many authors, see [9, 12–17]. They obtained the existence of positive solutions provided is superlinear or sublinear in by employing the cone expansion-compression fixed point theorem. In [18], by using the strongly monotone operator principle and the critical point theory to discuss BVP the authors established some sufficient conditions for to guarantee that the problem has a unique solution, at least one nonzero solution, or infinitely many solutions. In [10], Feng and Ge considered the fourth-order singular differential equation subject to one of the following boundary conditions: where . By using a fixed point index theorem in cones and the upper and lower solutions method, the authors discussed the existence of positive solutions for the above BVP. However, most papers only focus

References

[1]  S. P. Timoshenko, Theory of Elastic Stability, McGraw-Hill, New York, NY, USA, 1961.
[2]  W. Soedel, Vibrations of Shells and Plates, Marcel Dekker, New York, NY, USA, 1993.
[3]  E. Dulcska, “Soil settlement effects on buildings,” in Developments in Geotechnical Engineering, vol. 69, Elsevier, Amsterdam, The Netherlands, 1992.
[4]  D. R. Anderson and J. M. Davis, “Multiple solutions and eigenvalues for third-order right focal boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 267, no. 1, pp. 135–157, 2002.
[5]  J. V. Baxley and L. J. Haywood, “Nonlinear boundary value problems with multiple solutions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 2, pp. 1187–1198, 2001.
[6]  Z. Hao, L. Liu, and L. Debnath, “A necessary and sufficient condition for the existence of positive solutions of fourth-order singular boundary value problems,” Applied Mathematics Letters, vol. 16, no. 3, pp. 279–285, 2003.
[7]  R. P. Agarwal, Focal Boundary Value Problems for Differential and Difference Equations, vol. 436 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
[8]  R. P. Agarwal, D. O. Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.
[9]  Z. Bai and H. Wang, “On positive solutions of some nonlinear fourth-order beam equations,” Journal of Mathematical Analysis and Applications, vol. 270, no. 2, pp. 357–368, 2002.
[10]  M. Feng and W. Ge, “Existence of positive solutions for singular eigenvalue problems,” Electronic Journal of Differential Equations, vol. 105, pp. 1–9, 2006.
[11]  D. J. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, vol. 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Orlando, Fla, USA, 1988.
[12]  J. M. Davis, P. W. Eloe, and J. Henderson, “Triple positive solutions and dependence on higher order derivatives,” Journal of Mathematical Analysis and Applications, vol. 237, no. 2, pp. 710–720, 1999.
[13]  J. M. Davis, J. Henderson, and P. J. Y. Wong, “General Lidstone problems: multiplicity and symmetry of solutions,” Journal of Mathematical Analysis and Applications, vol. 251, no. 2, pp. 527–548, 2000.
[14]  J. R. Graef, C. Qian, and B. Yang, “Multiple symmetric positive solutions of a class of boundary value problems for higher order ordinary differential equations,” Proceedings of the American Mathematical Society, vol. 131, no. 2, pp. 577–585, 2003.
[15]  Y. Li, “Positive solutions of fourth-order periodic boundary value problems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 54, no. 6, pp. 1069–1078, 2003.
[16]  Y. Li, “Positive solutions of fourth-order boundary value problems with two parameters,” Journal of Mathematical Analysis and Applications, vol. 281, no. 2, pp. 477–484, 2003.
[17]  B. Liu, “Positive solutions of fourth-order two point boundary value problems,” Applied Mathematics and Computation, vol. 148, no. 2, pp. 407–420, 2004.
[18]  F. Li, Q. Zhang, and Z. Liang, “Existence and multiplicity of solutions of a kind of fourth-order boundary value problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 62, no. 5, pp. 803–816, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133