The ion beam induced charge (IBIC) technique is a scanning microscopy technique which uses finely focused MeV ion beams as probes to measure and image the transport properties of semiconductor materials and devices. Its success stems from the combination of three main factors: the first is strictly technical and lies in the availability of laboratories and expertise around the world to provide scanning MeV ion beams focused down to submicrometer spots. The second reason stems from the peculiarity of MeV ion interaction with matter, due to the ability to penetrate tens of micrometers with reduced scattering and to excite a high number of free carriers to produce a measurable charge pulse from each incident ion. Last, but not least, is the availability of a robust theoretical model able to extract from the measurements all the parameters for an exhaustive characterization of the semiconductor. This paper is focused on these two latter issues, which are examined by reviewing the current status of IBIC by a comprehensive survey of the theoretical model and remarkable examples of IBIC applications and of ancillary techniques to the study of advanced semiconductor materials and devices. 1. Introduction A charged particle with energy higher than 10?eV (i.e., charged particulate ionizing radiation) passing through a material deposits energy mainly through Coulomb interactions with the electrons within the absorber atoms [1–3]. If the primary charged particles are electrons, a large fraction of their energy can be lost in a single interaction, and their trajectories within the material are very tortuous because their mass is equal to that of the orbital electrons with which they are interacting. Also in the case of energetic (MeV) ions, most of their energy is lost in collisions with the atomic electrons; the interactions with the atomic nuclei occur much more rarely. Therefore, the ion undergoes a huge number of interactions and gradually loses its kinetic energy: the net effect is a gradual decrease of its velocity until the particle is stopped. The range of MeV light ions in matter is mainly determined by the electron stopping power (i.e., the average energy loss of the ion per unit path length) and depends on both the ion and target masses, atomic number, and ion velocity; for MeV light (H or He) ions, it extends to distances of the order of tens of micrometers (an exhaustive review of ion energy loss mechanisms in matter can be found in chapter 2 of [1]). Moreover, because of the high ion/electron mass ratio, the trajectories of MeV ions undergo few large
References
[1]
Y. Wang and M. Nastasi, Eds., Handbook of Modern Ion Beam Materials Analysis, Materials Research Society, Warrendale, Pennsylvania, 2nd edition, 2009.
[2]
G. F. Knoll, Radiation Detection and Measurements, John Wiley & Sons, New York, NY, USA, 3rd edition, 2000.
[3]
M. B. H. Breese, D. N. Jamieson, and P. J. C. King, Materials Analysis using a Nuclear Microprobe, John Wiley & Sons, 1996.
[4]
J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—the stopping and range of ions in matter,” Nuclear Instruments and Methods in Physics Research B, vol. 268, no. 11-12, pp. 1818–1823, 2010.
[5]
J. S. Laird, C. Jagadish, D. N. Jamieson, and G. J. F. Legge, “Scanning ion deep level transient spectroscopy: I. Theory,” Journal of Physics D, vol. 39, pp. 1342–1351, 2006.
[6]
E. J. Kobetich and R. Katz, “Energy deposition by electron beams and δ rays,” Physical Review, vol. 170, no. 2, pp. 391–396, 1968.
[7]
C. A. Klein, “Bandgap dependence and related features of radiation ionization energies in semiconductors,” Journal of Applied Physics, vol. 39, no. 4, pp. 2029–2038, 1968.
[8]
M. B. H. Breese, P. J. C. King, G. W. Grime, and F. Watt, “Microcircuit imaging using an ion-beam-induced charge,” Journal of Applied Physics, vol. 72, no. 6, pp. 2097–2104, 1992.
[9]
B. Tilman, T. Reinert, and D. Spemann, “Editorial of the 2th International Conference of Nuclear Microprobe Technology and Applications (ICNMTA2010),” Nuclear Instruments and Methods in Physics Research B, vol. 269, no. 20, pp. 5–6, 2011.
[10]
M. B. H. Breese, “A review of ion beam induced charge microscopy for integrated circuit analysis,” Materials Science and Engineering B, vol. 42, no. 1–3, pp. 67–76, 1996.
[11]
M. B. H. Breese, E. Vittone, G. Vizkelethy, and P. J. Sellin, “A review of ion beam induced charge microscopy,” Nuclear Instruments and Methods in Physics Research B, vol. 264, no. 2, pp. 345–360, 2007.
[12]
G. H. Doehler and H. Heyszenau, “Conduction in the relaxation regime,” Physical Review B, vol. 12, pp. 641–649, 1975.
[13]
Z. He, “Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 463, pp. 250–267, 2001.
[14]
T. H. Prettyman, “Theoretical framework for mapping pulse shapes in semiconductor radiation detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 428, no. 1, pp. 72–80, 1999.
[15]
J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 3rd edition, 1998.
[16]
W. Shockley, “Currents to conductors induced by a moving point charge,” Journal of Applied Physics, vol. 9, no. 10, pp. 635–636, 1938.
[17]
S. Ramo, “Currents induced by electron motion,” Proceedings of the IRE, vol. 27, pp. 584–585, 1939.
[18]
C. K. Jen, “On the induced current and energy balance in electronics,” Proceedings of the IRE, pp. 345–349, 1941.
[19]
G. Cavalleri, E. Gatti, G. Fabri, and V. Svelto, “Extension of Ramo's theorem as applied to induced charge in semiconductor detectors,” Nuclear Instruments and Methods in Physics Research, vol. 92, no. 1, pp. 137–140, 1971.
[20]
E. Vittone, F. Fizzotti, A. Lo Giudice, C. Paolini, and C. Manfredotti, “Theory of ion beam induced charge collection in detectors based on the extended Shockley-Ramo theorem,” Nuclear Instruments and Methods in Physics Research B, vol. 161, no. 1–4, pp. 446–451, 2000.
[21]
J. B. Gunn, “A general expression for electrostatic induction and its application to semiconductor devices,” Solid State Electronics, vol. 7, no. 10, pp. 739–742, 1964.
[22]
E. Vittone, “Theory of ion beam induced charge measurement in semiconductor devices based on the Gunn's theorem,” Nuclear Instruments and Methods in Physics Research B, vol. 219-220, no. 1–4, pp. 1043–1050, 2004.
[23]
L. A. Hamel and M. Julien, “Generalized demonstration of Ramo’s theorem with space charge and polarization effects,” Nuclear Instruments and Methods in Physics Research A, vol. 597, pp. 207–211, 2011.
[24]
V. Radeka, “Low-noise techniques in detectors,” Annual Review of Nuclear and Particle Science, vol. 38, pp. 217–277, 1988.
[25]
E. Vittone, Z. Pastuovi?, P. Olivero et al., “Semiconductor characterization by scanning ion beam induced charge (IBIC) microscopy,” Nuclear Instruments and Methods in Physics Research B, vol. 266, pp. 1312–1318, 2008.
[26]
S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Vienna, Austria, 1984.
[27]
T. H. Prettyman, “Method for mapping charge pulses in semiconductor radiation detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 422, no. 1–3, pp. 232–237, 1999.
[28]
G. Vizkelethy, “Simulation of ion Beam induced current in radiation detectors and microelectronic devices,” Sandia National Laboratories Report SAND20096757.
[29]
G. Vizkelethy, “Simulation of ion beam induced current in radiation detectors and microelectronic devices,” Nuclear Instruments and Methods in Physics Research B, vol. 269, pp. 2330–2335, 2011.
[30]
J. Laird, T. Hirao, S. Onoda, and T. Kamiya, “The role of high-injection effects on the transient ion beam induced current response of high-speed photodetectors,” Nuclear Instruments and Methods in Physics Research B, vol. 219-220, pp. 1015–1021, 2004.
[31]
P. Olivero, J. Forneris, P. Gamarra et al., “Monte Carlo analysis of a lateral IBIC experiment on a 4H-SiC Schottky diode,” Nuclear Instruments and Methods in Physics Research B, vol. 269, pp. 2350–2354, 2011.
[32]
J. A. van Kan, P. Malar, and A. B. de Vera, “The second generation Singapore high resolution proton beam writing facility,” Review of Scientific Instruments, vol. 83, pp. 902–905, 2012.
[33]
H. J. Leamy, “Charge collection scanning electron microscopy,” Journal of Applied Physics, vol. 53, no. 6, pp. R51–R80, 1982.
[34]
J. Domaradzki and D. Kaczmarek, “Optical beam injection methods as a tool for analysis of semiconductor structures,” Optica Applicata, vol. 35, no. 1, pp. 129–137, 2005.
[35]
H. Sch?ne, D. S. Walsh, F. W. Sexton et al., “Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics,” Nuclear Instruments and Methods in Physics Research B, vol. 158, no. 1, pp. 424–431, 1999.
[36]
P. J. Sellin, A. Lohstroh, A. Simon, and M. B. H. Breese, “Digital IBIC-new spectroscopic modalities for ion-beam-induced charge imaging,” Nuclear Instruments and Methods in Physics Research A, vol. 521, pp. 600–607, 2004.
[37]
C. Manfredotti, F. Fizzotti, E. Vittone et al., “IBIC investigations on CVD diamond,” Nuclear Instruments and Methods in Physics Research B, vol. 100, no. 1, pp. 133–140, 1995.
[38]
E. Vittone, F. Fizzotti, A. Lo Giudice, P. Polesello, and C. Manfredotti, “Simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC,” Nuclear Instruments and Methods in Physics Research A, vol. 428, no. 1, pp. 81–87, 1999.
[39]
C. Manfredotti, F. Fizzotti, P. Polesello et al., “Scanning Ion Beam Microscopy: a new tool for mapping the transport properties of semiconductors and insulators,” in Proceedings of the CP392, Application of Accelerators in Research and Industry, J. L. Duggan and I. L. Morgan, Eds., pp. 705–708, AIP Press, New York, NY, USA, 1997.
[40]
M. B. H. Breese, G. W. Grime, and F. Watt, “The generation and applications of ion beam induced charge images,” Nuclear Instruments and Methods in Physics Research B, vol. 77, no. 1–4, pp. 301–311, 1993.
[41]
E. Vittone, F. Fizzotti, E. Gargioni et al., “Evaluation of the diffusion length in silicon diodes by means of the lateral IBIC technique,” Nuclear Instruments and Methods in Physics Research B, vol. 158, no. 1, pp. 476–480, 1999.
[42]
E. Vittone, C. Manfredotti, F. Fizzotti et al., “Measurements of charge collection profiles in virgin and strongly irradiated silicon diodes by means of the micro-IBICC technique,” Nuclear Instruments and Methods in Physics Research A, vol. 476, no. 3, pp. 607–613, 2002.
[43]
F. Fizzotti, E. Colombo, A. Lo Giudice et al., “Measurement of charge collection profiles in irradiated silicon diodes by lateral IBIC technique,” Nuclear Instruments and Methods in Physics Research B, vol. 260, no. 1, pp. 259–263, 2007.
[44]
C. Manfredotti, F. Fizzotti, A. Lo Giudice et al., “Time-resolved ion beam-induced charge collection measurement of minority carrier lifetime in semiconductor power devices by using Gunn's theorem,” Materials Science and Engineering B, vol. 102, no. 1–3, pp. 193–197, 2003.
[45]
B. N. Guo, M. El Bouanani, S. N. Renfrow et al., “Diffusion-time-resolved ion-beam-induced charge collection from stripe-like test junctions induced by heavy-ion microbeams,” Nuclear Instruments and Methods in Physics Research B, vol. 181, no. 1–4, pp. 315–319, 2001.
[46]
M. Zmeck, L. J. Balk, T. Osipowicz et al., “Ion beam induced charge microscopy studies of power diodes,” Journal of Physics Condensed Matter, vol. 16, no. 2, pp. S57–S66, 2004.
[47]
T. Osipowicz, M. Zmeck, F. Watt et al., “IBIC analysis of high-power devices,” Nuclear Instruments and Methods in Physics Research B, vol. 181, no. 1–4, pp. 311–314, 2001.
[48]
C. Yang, D. N. Jamieson, S. M. Hearne et al., “Ion-beam-induced-charge characterisation of particle detectors,” Nuclear Instruments and Methods in Physics Research B, vol. 190, no. 1–4, pp. 212–216, 2002.
[49]
A. Simon and G. Kalinka, “Investigation of charge collection in a silicon PIN photodiode,” Nuclear Instruments and Methods in Physics Research B, vol. 231, pp. 507–512, 2005.
[50]
P. E. Dodd, M. R. Shaneyfelt, K. M. Horn et al., “SEU-sensitive volumes in bulk and SOI SRAMs from first-principles calculations and experiments,” IEEE Transactions on Nuclear Science, vol. 48, no. 6, pp. 1893–1903, 2001.
[51]
G. Vizkelethy, P. E. Dodd, J. R. Schwank et al., “Anomalous charge collection from silicon-on-insulator structures,” Nuclear Instruments and Methods in Physics Research B, vol. 210, pp. 211–215, 2003.
[52]
V. Ferlet-Cavrois, P. Paillet, J. R. Schwank et al., “Charge collection by capacitive influence through isolation oxides,” IEEE Transactions on Nuclear Science, vol. 50, no. 6, pp. 2208–2218, 2003.
[53]
G. Vizkelethy, D. K. Brice, and B. L. Doyle, “The theory of ion beam induced charge in metal-oxide-semiconductor structures,” Journal of Applied Physics, vol. 101, no. 7, Article ID 074506, 6 pages, 2007.
[54]
A. D. C. Alves, S. Thompson, C. Yang, and D. N. Jamieson, “Mapping ion beam induced current changes in a commercial MOSFET,” Nuclear Instruments and Methods in Physics Research B, vol. 269, pp. 2355–2359, 2011.
[55]
C. Donolato, R. Nipoti, D. Govoni, G. P. Egeni, V. Rudello, and P. Rossi, “Images of grain boundaries in polycrystalline silicon solar cells by electron and ion beam induced charge collection,” Materials Science and Engineering B, vol. 42, no. 1–3, pp. 306–310, 1996.
[56]
C. Donolato and R. Nipoti, “Simulation of pulse height spectra in ion beam induced charge microscopy of polycrystalline silicon,” Journal of Applied Physics, vol. 82, no. 2, pp. 742–747, 1997.
[57]
K. K. Lee and D. N. Jamieson, “Characterization of silicon polycrystalline solar cells at cryogenic temperatures with ion beam-induced charge,” Solar Energy Materials and Solar Cells, vol. 94, no. 12, pp. 2405–2410, 2010.
[58]
V. Borjanovi?, M. Jak?i?, Z. Pastuovi?, B. Pivac, and E. Katz, “IBIC Studies of structural defect activity in different polycrystalline silicon material,” Vacuum, vol. 71, pp. 117–122, 2003.
[59]
V. Borjanovi?, M. Jak?i?, ?. Pastuovi? et al., “Defects in polycrystalline silicon studied by IBICC,” Solar Energy Materials & Solar Cells, vol. 72, pp. 487–494, 2002.
[60]
L. C. G. Witham, D. N. Jamieson, R. A. Bardos, and A. Saint, “Trace elements and charge recombination in polycrystalline photovoltaic materials,” Nuclear Instruments and Methods in Physics Research B, vol. 136–38, pp. 1361–1365, 1998.
[61]
A. M. Jakob, D. Spemann, R. Thies, J. Barzola-Quiqui, J. Vogt, and T. Butz, “A characterisation of electronic properties of alkaline texturized polycrystalline silicon solar cells using IBIC,” Nuclear Instruments and Methods in Physics Research B, vol. 269, pp. 2345–2349, 2011.
[62]
R. Hofstadter, “Remarks on diamond crystal counters,” Physical Review, vol. 73, no. 6, p. 631, 1948.
[63]
C. Canali, E. Gatti, S. F. Kozlov et al., “Electrical properties and performances of natural diamond nuclear radiation detectors,” Nuclear Instruments and Methods, vol. 160, no. 1, pp. 73–77, 1979.
[64]
E. A. Burgemeister, “Dosimetry with a diamond operating as a resistor,” Physics in Medicine and Biology, vol. 25, pp. 519–532, 1981.
[65]
D. R. Kania, M. I. Landstrass, M. A. Plano, L. S. Pan, and S. Han, “Diamond radiation detectors,” Diamond and Related Materials, vol. 2, no. 5–7, pp. 1012–1019, 1993.
[66]
C. Manfredotti, “CVD diamond detectors for nuclear and dosimetric applications,” Diamond and Related Materials, vol. 14, pp. 531–540, 2005.
[67]
C. Manfredotti, F. Fizzotti, E. Vittone, S. Bistolfi, M. Boero, and P. Polesello, “Grain size effects in CVD diamond detectors,” Nuclear Instruments and Methods in Physics Research B, vol. 93, no. 4, pp. 516–520, 1994.
[68]
C. Manfredotti, F. Fizzotti, E. Vittone et al., “IBIC investigations on CVD diamond,” Nuclear Instruments and Methods in Physics Research B, vol. 100, no. 1, pp. 133–140, 1995.
[69]
M. Jak?i?, T. Tadi?, I. Orli?, T. Osipowicz, E. Vittone, and C. Manfredotti, “Imaging of charge collection properties of CVD diamond using high-resolution ion beam induced charge technique with protons and alpha particles,” New Diamond and Frontier Carbon Technology, vol. 8, no. 5, pp. 391–398, 1998.
[70]
C. Manfredotti, F. Fizzotti, A. LoGiudice et al., “Ion microbeam analysis of CVD diamond,” Diamond and Related Materials, vol. 8, no. 8-9, pp. 1597–1601, 1999.
[71]
P. J. Sellin, A. Lohstroh, A. W. Davies et al., “Charge transport in polycrystalline and single crystal synthetic diamond using ion beam induced charge imaging,” Nuclear Instruments and Methods in Physics Research B, vol. 260, no. 1, pp. 293–298, 2007.
[72]
L. Milazzo and A. Mainwood, “Modelling of diamond detectors: effects of the polycrystalline structure and a pulse shape analysis,” Diamond and Related Materials, vol. 13, no. 4–8, pp. 934–937, 2004.
[73]
S. M. Hearne, D. N. Jamieson, E. Trajkov, S. Prawer, and J. E. Butler, “Temperature-dependent emptying of grain-boundary charge traps in chemical vapor deposited diamond,” Applied Physics Letters, vol. 84, no. 22, pp. 4493–4495, 2004.
[74]
C. Manfredotti, E. Vittone, C. Paolini, P. Olivero, and A. Lo Giudice, “Blue light sensitization of CVD diamond detectors,” Diamond and Related Materials, vol. 12, no. 3–7, pp. 662–666, 2003.
[75]
C. Manfredotti, F. Fizzotti, P. Polesello et al., “IBIC and IBIL microscopy applied to advanced semiconductor materials,” Nuclear Instruments and Methods in Physics Research B, vol. 136–138, pp. 1333–1339, 1998.
[76]
M. B. H. Breese, P. J. Sellin, L. C. Alves, A. P. Knights, R. S. Sussmann, and A. J. Whitehead, “Imaging of charge transport properties in polycrystalline CVD diamond using IBIC and IBIL microscopy,” Nuclear Instruments and Methods in Physics Research B, vol. 181, no. 1–4, pp. 219–224, 2001.
[77]
H. Pernegger, S. Roe, P. Weilhammer et al., “Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique,” Journal of Applied Physics, vol. 97, Article ID 073704, 9 pages, 2005.
[78]
C. Manfredotti, F. Fizzotti, K. Mirri et al., “A micro-IBIC comparison between natural and CVD diamond,” Diamond and Related Materials, vol. 6, no. 2–4, pp. 320–324, 1997.
[79]
C. Manfredotti, F. Fizzotti, P. Polesello, and E. Vittone, “IBIC investigation of radiation-induced effects in CVD and natural diamond,” Nuclear Instruments and Methods in Physics Research A, vol. 426, no. 1, pp. 156–163, 1999.
[80]
A. Lohstroh, P. J. Sellin, S. Gkoumas et al., “Ion beam induced charge (IBIC) irradiation damage study in synthetic single crystal diamond using 2.6 MeV protons,” Physica Status Solidi, vol. 205, no. 9, pp. 2211–2215, 2008.
[81]
A. Lohstroh, P. J. Sellin, S. G. Wang et al., “Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond,” Applied Physics Letters, vol. 90, no. 10, Article ID 102111, 3 pages, 2007.
[82]
D. Asner and CERN-RD42 collaboration, “Nuclear instruments and methods in physics research,” Diamond Pixel Modules, vol. 636, no. S125, S129 pages, 2011.
[83]
A. Lo Giudice, P. Olivero, C. Manfredotti et al., “Lateral IBIC characterization of single crystal synthetic diamond detectors,” Physica Status Solidi, vol. 5, no. 2, pp. 80–82, 2011.
[84]
F. Nava, G. Bertuccio, A. Cavallini, and E. Vittone, “Silicon carbide and its use as a radiation detector material,” Measurement Science and Technology, vol. 19, no. 10, Article ID 102001, 2008.
[85]
C. Manfredotti, F. Fizzotti, A. Lo Giudice, C. Paolini, E. Vittone, and F. Nava, “Investigation of 4H-SiC Schottky diodes by ion beam induced charge (IBIC) technique,” Applied Surface Science, vol. 184, no. 1–4, pp. 448–454, 2001.
[86]
A. L. Giudice, F. Fizzotti, C. Manfredotti, E. Vittone, and F. Nava, “Average energy dissipated by mega-electron-volt hydrogen and helium ions per electron-hole pair generation in 4H-SiC,” Applied Physics Letters, vol. 87, no. 22, Article ID 222105, pp. 1–3, 2005.
[87]
M. Jak?i?, Z. Bosnjak, D. Gracin et al., “Characterisation of SiC by IBIC and other IBA techniques,” Nuclear Instruments and Methods in Physics Research B, vol. 188, no. 1–4, pp. 130–134, 2002.
[88]
A. L. Giudice, Y. Garino, C. Manfredotti, V. Rigato, and E. Vittone, “Angle resolved IBIC analysis of 4H-SiC Schottky diodes,” Nuclear Instruments and Methods in Physics Research B, vol. 249, no. 1-2, pp. 213–216, 2006.
[89]
K. K. Lee, T. Nishijima, T. Ohshima, and D. N. Jamieson, “Ion beam induced charge gate rupture of oxide on 6H-SiC,” Nuclear Instruments and Methods in Physics Research B, vol. 181, no. 1–4, pp. 324–328, 2001.
[90]
E. Vittone, V. Rigato, P. Olivero et al., “Temperature dependent IBIC study of 4H-SiC Schottky diodes,” Nuclear Instruments and Methods in Physics Research B, vol. 231, no. 1–4, pp. 491–496, 2005.
[91]
S. del Sordo, L. Abbene, E. Caroli, A. M. Mancini, A. Zappettini, and P. Ubertini, “Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications,” Sensors, vol. 9, no. 5, pp. 3491–3526, 2009.
[92]
P. J. Sellin, A. W. Davies, S. Gkoumas et al., “Ion beam induced charge imaging of charge transport in CdTe and CdZnTe,” Nuclear Instruments and Methods in Physics Research B, vol. 266, no. 8, pp. 1300–1306, 2008.
[93]
?. Pastuovi?, M. Jak?i?, R. B. James, K. Chattopadhyay, X. Ma, and A. Burger, “Influence of electrical contacts on charge collection profiles in CdZnTe studied by IBIC,” Nuclear Instruments and Methods in Physics Research A, vol. 458, no. 1-2, pp. 254–261, 2001.
[94]
C. Manfredotti, F. Fizzotti, P. Polesello et al., “Investigation on the electric field profile in CdTe by ion beam induced current,” Nuclear Instruments and Methods in Physics Research A, vol. 380, no. 1-2, pp. 136–140, 1996.
[95]
E. Vittone, F. Fizzotti, A. Lo Giudice, P. Polesello, and C. Manfredotti, “Simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC,” Nuclear Instruments and Methods in Physics Research A, vol. 428, no. 1, pp. 81–87, 1999.
[96]
G. Vizkelethy, B. A. Brunett, D. S. Walsh, R. B. James, and B. L. Doyle, “Investigation of the electronic properties of Cadmium Zinc Telluride (CZT) detectors using a nuclear microprobe,” Nuclear Instruments and Methods in Physics Research A, vol. 458, no. 1-2, pp. 563–567, 2001.
[97]
Z. Medunic, M. Jak?i?, Z. Z. Pastuovi?, and N. Skukan, “Temperature dependent TRIBIC in CZT detectors,” Nuclear Instruments and Methods in Physics Research B, vol. 210, pp. 237–242, 2003.
[98]
Z. Medunic, Z. Pastuovi?, M. Jak?i?, and N. Skukan, “Studying of trap levels by the use of focused ion beams,” Nuclear Instruments and Methods in Physics Research B, vol. 231, pp. 486–490, 2005.
[99]
A. Bosio, N. Romeo, S. Mazzamuto, and V. Canevari, “Polycrystalline CdTe thin films for photovoltaic applications,” Progress in Crystal Growth and Characterization of Materials, vol. 52, no. 4, pp. 247–279, 2006.
[100]
N. Baier, A. Brambilla, G. Feuillet, A. Lohstroh, S. Renet, and P. Sellin, “EBIC and IBIC Imaging on Polycrystalline CdTe,” Nuclear Instruments and Methods in Physics Research A, vol. 576, no. 1, pp. 5–9, 2007.
[101]
E. Colombo, A. Bosio, S. Calusi et al., “IBIC analysis of CdTe/CdS solar cells,” Nuclear Instruments and Methods in Physics Research B, vol. 267, no. 12-13, pp. 2181–2184, 2009.
[102]
T. Nishijima, H. Sekiguchi, S. Matsuda et al., “Study of basic mechanisms of single event upset in low-capacitance Si and GaAs diodes using high-energy microbeams,” Nuclear Instruments and Methods in Physics Research B, vol. 104, no. 1–4, pp. 528–532, 1995.
[103]
T. Nishijima, H. Sekiguchi, S. Matsuda, and N. Shiono, “Research of Si and GaAs diode structures by Ion Beam Induced Charge (IBIC) collection,” Nuclear Instruments and Methods in Physics Research B, vol. 130, no. 1–4, pp. 557–563, 1997.
[104]
F. Nava, P. Vanni, C. Canali et al., “Analysis of Uniformity of as Prepared and Irradiated S.I. GaAs Radiation Detectors,” IEEE Transaction on Nuclear Science, vol. 45, no. 3, pp. 609–616, 1998.
[105]
E. Vittone, F. Fizzotti, K. Mirri et al., “IBIC analysis of gallium arsenide Schottky diodes,” Nuclear Instruments and Methods in Physics Research B, vol. 158, no. 1, pp. 470–475, 1999.
[106]
E. Vittone, P. Olivero, F. Nava et al., “Lateral IBIC analysis of GaAs Schottky diodes,” Nuclear Instruments and Methods in Physics Research B, vol. 231, no. 1–4, pp. 513–517, 2005.
[107]
C. Yang, A. Bettiol, D. Jamieson et al., “Investigation of light emitting diodes using nuclear microprobes,” Nuclear Instruments and Methods in Physics Research B, vol. 158, no. 1, pp. 481–486, 1999.
[108]
M. Jak?i?, ?. Pastuovi?, and T. Tadi?, “New developments in IBIC for the study of charge transport properties of radiation detector materials,” Nuclear Instruments and Methods in Physics Research B, vol. 158, pp. 458–463, 1999.
[109]
Z. Pastuovi?, E. Vittone, I. Capan, and M. Jak?ic, “Probability of divacancy trap production in silicon diodes exposed to focused ion beam irradiation,” Applied Physics Letters, vol. 98, Article ID 092101, 3 pages, 2011.
[110]
IAEA, “Utilization of ion accelerators for studying and modelling of radiation induced defects in semiconductors and insulators,” F12024 Coordinated Research Programme 2012–2016, http://www-crp.iaea.org/html/rifa-show-activecrp.asp.
[111]
M. Jak?i?, Z. Meduni?, M. Bogovac, and N. Skukan, “Radiation damage microstructures in silicon and application in position sensitive charged particle detection,” Nuclear Instruments and Methods in Physics Research B, vol. 231, no. 1–4, pp. 502–506, 2005.
[112]
G. Pellegrini, P. Roy, R. Bates et al., “Technology development of 3D detectors for high-energy physics and imaging,” Nuclear Instruments and Methods in Physics Research A, vol. 487, no. 1-2, pp. 19–26, 2002.
[113]
CERN RD50 Collaboration, “Radiation hard semiconductor devices for very high luminosity colliders,” http://rd50.web.cern.ch/rd50/.
[114]
P. Olivero, J. Forneris, M. Jak?ic et al., “Focused ion beam fabrication and IBIC characterization of a diamond detector with buried electrodes,” Nuclear Instruments and Methods in Physics Research B, vol. 269, pp. 2340–2344, 2011.
[115]
L. M. Jong, J. N. Newnham, C. Yangg et al., “Charge sharing in multi-electrode devices for deterministic doping studied by IBIC,” Nuclear Instruments and Methods in Physics Research B, vol. 269, pp. 2336–2339, 2011.
[116]
J. Forneris, D. N. Jamieson, G. Giacomini, C. Yang, and E. Vittone, “Modeling of ion beam induced charge sharing experiments for the design of high resolution position sensitive detectors,” Nuclear Instruments and Methods in Physics Research B. In press.