全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Singlet Generation from Triplet Excitons in Fluorescent Organic Light-Emitting Diodes

DOI: 10.1155/2013/670130

Full-Text   Cite this paper   Add to My Lib

Abstract:

A potential major drawback with organic light-emitting devices, (OLEDs) is the limit of 25% singlet exciton production through spin-dependent charge recombination. Recent device results, however, show that this limit does not hold and far higher efficiencies can be achieved in purely fluorescent-based systems (Wohlgenannt et al. (2001), Dhoot et al. (2002), Lin et al. (2003), Wilson et al. (2001), Cao et al. (1999), Baldo et al. (1999), and Kim et al. (2000)). Thus, the question arises; is recombination spin dependent (Tandon et al. (2003)) or are singlet excitons generated in secondary processes? Direct measurement of the singlet generation rate in working devices of 44% has been shown (Rothe et al. (2006)), which have been verified as being part due to direct singlets formed on recombination and part from triplet fusion, singlets produced during triplet annihilation (Kondakov et al. (2009), King et al. (2011), and Zhang and Forrest (2012)). Here, the various routes by which triplet excitons can generate singlet states are discussed and their relative contributions to the overall electroluminescence yield are given. The materials requirements to obtain maximum singlet production from triplet states are discussed. These triplet contributions can give very high device yields for fluorescent emitters, which in the case of blue devices can be highly advantageous. Further, new devices architectures open up which are simple and have intrinsically low turn on voltages, ideal for large-area OLED lighting applications. 1. Introduction Current state-of-the-art OLED and PLED devices have been optimised for use in displays, having small-area pixels, yielding high efficiency and good individual colour from each pixel. Active matrix displays using these are now found in the latest smart phones (ca. 2012), including Samsung’s fastest selling smart phone to date, the Galaxy S2. The displays employ red phosphorescent emitters but blue and green fluorescent emitters. In the latest generation of high-efficiency (>60?lm/W) organic solid-state lighting (OSSL) panels from Novaled, Osram, and Konica Minolta-Philips, use of all phosphorescent emitters yields very warm white colours, with poor colour temperatures of 2600?K, and poor lifetimes especially for the blue component [1–3]. The phosphorescent emitters lack good saturated colour but more importantly the blue metal organic complexes used are unstable. For the most common blue (aqua) phosphor, FIrpic [4], vacuum deposition causes partial loss of fluorine substituents from the ligands, and partial decomplexation of the

References

[1]  G. He, C. Rothe, S. Murano, A. Werner, O. Zeika, and J. Birnstock, “White stacked OLED with 38 lm/W and 100,000-hour lifetime at 1000 cd/m 2 for display and lighting applications,” Journal of the Society for Information Display, vol. 17, no. 2, pp. 159–165, 2009.
[2]  N. Ide, H. Tsuji, N. Ito, Y. Matsuhisa, S. Houzumi, and T. Nishimori, “White OLED devices and processes for lighting applications,” in Organic Photonics Iv., P. L. Heremans, R. Coehoorn, and C. Adachi, Eds., vol. 7722, Spie-Int Soc Optical Engineering, Bellingham, Wash, USA, 2010.
[3]  Y. S. Tyan, Y. Q. Rao, X. F. Ren et al., Tandem Hybrid White OLED Devices With Improved Light Extraction, Campbell: Society For Information Display, 2009.
[4]  C. Adachi, R. C. Kwong, P. Djurovich et al., “Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials,” Applied Physics Letters, vol. 79, no. 13, pp. 2082–2084, 2001.
[5]  V. Sivasubramaniam, F. Brodkorb, S. Hanning et al., “Fluorine cleavage of the light blue heteroleptic triplet emitter FIrpic,” Journal of Fluorine Chemistry, vol. 130, no. 7, pp. 640–649, 2009.
[6]  V. Sivasubramaniam, F. Brodkorb, S. Hanning et al., “Investigation of FIrpic in PhOLEDs via LC/MS technique,” Central European Journal of Chemistry, vol. 7, no. 4, pp. 836–845, 2009.
[7]  K. T. Kamtekar, A. P. Monkman, and M. R. Bryce, “Recent advances in white organic light-emitting materials and devices (WOLEDS),” Advanced Materials, vol. 22, no. 5, pp. 572–582, 2010.
[8]  A. Van Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen et al., “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” Journal of the American Chemical Society, vol. 126, no. 24, pp. 7718–7727, 2004.
[9]  K. Brunner, A. Van Dijken, H. B?rner, J. J. A. M. Bastiaansen, N. M. M. Kiggen, and B. M. W. Langeveld, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: tuning the HOMO level without influencing the triplet energy in small molecules,” Journal of the American Chemical Society, vol. 126, no. 19, pp. 6035–6042, 2004.
[10]  Y. C. Chen, G. S. Huang, C. C. Hsiao, and S. A. Chen, “High triplet energy polymer as host for electrophosphorescence with high efficiency,” Journal of the American Chemical Society, vol. 128, no. 26, pp. 8549–8558, 2006.
[11]  S. O. Jeon, K. S. Yook, C. W. Joo, and J. Y. Lee, “High-efficiency deep-blue-phosphorescent organic light-emitting diodes using a phosphine oxide and a phosphine sulfide high-triplet-energy host material with bipolar charge-transport properties,” Advanced Materials, vol. 22, no. 16, pp. 1872–1876, 2010.
[12]  H. Sasabe, J. I. Takamatsu, T. Motoyama et al., “High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex,” Advanced Materials, vol. 22, no. 44, pp. 5003–5007, 2010.
[13]  H. A. Al-Attar, G. C. Griffiths, T. N. Moore et al., “Highly efficient, solution-processed, single-layer, electrophosphorescent diodes and the effect of molecular dipole moment,” Advanced Functional Materials, vol. 21, no. 12, pp. 2376–2382, 2011.
[14]  H. A. Al-Attar and A. P. Monkman, “Erratum: solution processed multilayer polymer light-emitting diodes based on different molecular weight host (Journal of Applied Physics (2011) 109 (074516)),” Journal of Applied Physics, vol. 110, no. 2, Article ID 029905, 2011.
[15]  N. Tian, D. Lenkeit, S. Pelz et al., “Screening structure-property correlations and device performance of Ir(III) complexes in multi-layer PhOLEDs,” Dalton Transactions, vol. 40, pp. 11629–11635, 2011.
[16]  K. S. Yook and J. Y. Lee, “Solution processed multilayer deep blue and white phosphorescent organic light-emitting diodes using an alcohol soluble bipolar host and phosphorescent dopant materials,” Journal of Materials Chemistry, vol. 22, pp. 14546–14550, 2012.
[17]  J. S. Kim, R. H. Friend, I. Grizzi, and J. H. Burroughes, “Spin-cast thin semiconducting polymer interlayer for improving device efficiency of polymer light-emitting diodes,” Applied Physics Letters, vol. 87, no. 2, pp. 1–3, 2005.
[18]  X. Gong, S. Wang, D. Moses, G. C. Bazan, and A. J. Heeger, “Multilayer polymer light-emitting diodes: white-light emission with high efficiency,” Advanced Materials, vol. 17, no. 17, pp. 2053–2058, 2005.
[19]  Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature, vol. 440, no. 7086, pp. 908–912, 2006.
[20]  S. Reineke, F. Lindner, G. Schwartz et al., “White organic light-emitting diodes with fluorescent tube efficiency,” Nature, vol. 459, no. 7244, pp. 234–238, 2009.
[21]  M. E. Kondakova, J. C. Deaton, T. D. Pawlik et al., “Highly efficient fluorescent-phosphorescent triplet-harvesting hybrid organic light-emitting diodes,” Journal of Applied Physics, vol. 107, no. 1, Article ID 014515, 2010.
[22]  R. G. Kepler, J. C. Caris, P. Avakian, and E. Abramson, “Triplet excitons and delayed fluorescence in anthracene crystals,” Physical Review Letters, vol. 10, no. 9, pp. 400–402, 1963.
[23]  C. A. Parker and C. G. Hatchard, “Delayed fluorescence from solutions of anthracene and phenanthrene,” in Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 269, p. 574, 1962.
[24]  J. B. Birks, “On the delayed fluorescence of pyrene solutions,” Journal of Physical Chemistry, vol. 67, no. 10, pp. 2199–2200, 1963.
[25]  R. P. Groff, R. E. Merrifield, and P. Avakian, “Singlet and triplet channels for triplet-exciton fusion in anthracene crystals,” Chemical Physics Letters, vol. 5, no. 3, pp. 168–170, 1970.
[26]  M. Pope, Geacinto. Ne, and F. Vogel, “Singlet exciton fission and triplet-triplet exciton fusion in crystalline tetracene,” Molecular Crystals and Liquid Crystals, vol. 6, p. 83, 1969.
[27]  J. Jortner, S. A. Rice, J. L. Katz, and S. I. L. Choi, “Triplet excitons in crystals of aromatic molecules,” The Journal of Chemical Physics, vol. 42, no. 1, pp. 309–323, 1965.
[28]  R. S. Knox and C. E. Swenberg, “Direct radiative Exciton-exciton annihilation,” The Journal of Chemical Physics, vol. 44, no. 7, pp. 2577–2580, 1966.
[29]  C. E. Swenberg, “Theory of triplet exciton annihilation in polyacene crystals,” The Journal of Chemical Physics, vol. 51, no. 5, pp. 1753–1764, 1969.
[30]  D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, “Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes,” Journal of Applied Physics, vol. 106, no. 12, Article ID 124510, 2009.
[31]  B. Dick, “AM1 and INDO/S calculations on electronic singlet and triplet states involved in excited-state intramolecular proton transfer of 3-hydroxyflavone,” Journal of Physical Chemistry, vol. 94, no. 15, pp. 5752–5756, 1990.
[32]  B. Dick and B. Nickel, “Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an indo ci study,” Chemical Physics, vol. 78, no. 1, pp. 1–16, 1983.
[33]  Y. Zhang and S. R. Forrest, “Triplets Contribute to Both an Increase and Loss in Fluorescent Yield in Organic Light Emitting Diodes,” Physical Review Letters, vol. 108, Article ID 267404, 5 pages, 2012.
[34]  R. W. T. Higgins, A. P. Monkman, H. G. Nothofer, and U. Scherf, “Effects of singlet and triplet energy transfer to molecular dopants in polymer light-emitting diodes and their usefulness in chromaticity tuning,” Applied Physics Letters, vol. 79, no. 6, pp. 857–859, 2001.
[35]  A. K?hler and H. B?ssler, “Triplet states in organic semiconductors,” Materials Science and Engineering R, vol. 66, no. 4–6, pp. 71–109, 2009.
[36]  A. P. Monkman, H. D. Burrows, M. D. Miguel, I. Hamblett, and S. Navaratnam, “Measurement of the S0-T1 energy gap in poly(2-methoxy,5-(2′-ethyl-hexoxy)-p-phenylenevinylene) by triplet-triplet energy transfer,” Chemical Physics Letters, vol. 307, no. 5-6, pp. 303–309, 1999.
[37]  A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π-conjugated polymers,” Physical Review Letters, vol. 86, no. 7, pp. 1358–1361, 2001.
[38]  M. Knupfer, “Exciton binding energies in organic semiconductors,” Applied Physics A, vol. 77, no. 5, pp. 623–626, 2003.
[39]  S. F. Alvarado, P. F. Seidler, D. G. Lidzey, and D. D. C. Bradley, “Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope,” Physical Review Letters, vol. 81, no. 5, pp. 1082–1085, 1998.
[40]  M. Rohlfing and S. G. Louie, “Optical Excitations in Conjugated Polymers,” Physical Review Letters, vol. 82, no. 9, pp. 1959–1962, 1999.
[41]  S. M. King, H. L. Vaughan, and A. P. Monkman, “Orientation of triplet and singlet transition dipole moments in polyfluorene, studied by polarised spectroscopies,” Chemical Physics Letters, vol. 440, no. 4–6, pp. 268–272, 2007.
[42]  A. Monkman and H. D. Burrows, “Backbone planarity effects on triplet energies and electron-electron correlation in luminescent conjugated polymers,” Synthetic Metals, vol. 141, no. 1-2, pp. 81–86, 2004.
[43]  A. P. Monkman, H. D. Burrows, I. Hamblett, S. Navarathnam, M. Svensson, and M. R. Andersson, “The effect of conjugation length on triplet energies, electron delocalization and electron-electron correlation in soluble polythiophenes,” Journal of Chemical Physics, vol. 115, no. 19, pp. 9046–9049, 2001.
[44]  S. King, C. Rothe, and A. Monkman, “Triplet build in and decay of isolated polyspirobifluorene chains in dilute solution,” Journal of Chemical Physics, vol. 121, no. 21, pp. 10803–10808, 2004.
[45]  J. S. De Melo, H. D. Burrows, M. Svensson, M. R. Andersson, and A. P. Monkman, “Photophysics of thiophene based polymers in solution: the role of nonradiative decay processes,” Journal of Chemical Physics, vol. 118, no. 3, pp. 1550–1556, 2003.
[46]  S. M. King, R. Matheson, F. B. Dias, and A. P. Monkman, “Enhanced triplet formation by twisted intramolecular charge-transfer excited states in conjugated oligomers and polymers,” Journal of Physical Chemistry B, vol. 112, no. 27, pp. 8010–8016, 2008.
[47]  Z. H. Kafafi, Organic Electroluminescence, Marcel Dekker, New York, NY, USA, 2005.
[48]  J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” Journal of Applied Physics, vol. 94, no. 12, pp. 7764–7767, 2003.
[49]  C. Rothe, H. A. Al Attar, and A. P. Monkman, “Absolute measurements of the triplet-triplet annihilation rate and the charge-carrier recombination layer thickness in working polymer light-emitting diodes based on polyspirobifluorene,” Physical Review B, vol. 72, no. 15, Article ID 155330, 9 pages, 2005.
[50]  W. Barford, “Theory of singlet exciton yield in light-emitting polymers,” Physical Review B, vol. 70, no. 20, Article ID 205204, 8 pages, 2004.
[51]  M. Reufer, M. J. Walter, P. G. Lagoudakis et al., “Spin-conserving carrier recombination in conjugated polymers,” Nature Materials, vol. 4, no. 4, pp. 340–346, 2005.
[52]  S. Karabunarliev and E. R. Bittner, “Spin-dependent electron-hole capture kinetics in luminescent conjugated polymers,” Physical Review Letters, vol. 90, no. 5, Article ID 057402, 4 pages, 2003.
[53]  M. Segal, M. Singh, K. Rivoire, S. Difley, T. Van Voorhis, and M. A. Baldo, “Extrafluorescent electroluminescence in organic light-emitting devices,” Nature Materials, vol. 6, no. 5, pp. 374–378, 2007.
[54]  T. A. Ford, H. Ohkita, S. Cook, J. R. Durrant, and N. C. Greenham, “Direct observation of intersystem crossing in charge-pair states in polyfluorene polymer blends,” Chemical Physics Letters, vol. 454, no. 4–6, pp. 237–241, 2008.
[55]  M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, “Formation cross-sections of singlet and triplet excitons in π-conjugated polymers,” Nature, vol. 409, no. 6819, pp. 494–497, 2001.
[56]  J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations,” Journal of Applied Physics, vol. 88, no. 2, pp. 1073–1081, 2000.
[57]  C. Rothe, S. M. King, and A. P. Monkman, “Direct measurement of the singlet generation yield in polymer light-emitting diodes,” Physical Review Letters, vol. 97, no. 7, Article ID 076602, 2006.
[58]  A. P. Monkman, C. Rothe, and S. M. King, “Singlet generation yields in organic light-emitting diodes,” Proceedings of the IEEE, vol. 97, no. 9, pp. 1597–1605, 2009.
[59]  L. C. Lin, H. F. Meng, J. T. Shy et al., “Triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes,” Physical Review Letters, vol. 90, no. 3, Article ID 036601, 4 pages, 2003.
[60]  M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Excitonic singlet-triplet ratio in a semiconducting organic thin film,” Physical Review B, vol. 60, no. 20, pp. 14422–14428, 1999.
[61]  M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials,” Physical Review B, vol. 68, no. 7, Article ID 075211, 14 pages, 2003.
[62]  D. Y. Kondakov, “Role of triplet-triplet annihilation in highly efficient fluorescent devices,” Journal of The Society for Information Display, vol. 17, no. 2, pp. 137–144.
[63]  D. Y. Kondakov, “Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives,” Journal of Applied Physics, vol. 102, no. 11, Article ID 114504, 5 pages, 2007.
[64]  K. Tandon, S. Ramasesha, and S. Mazumdar, “Electron correlation effects in electron-hole recombination in organic light-emitting diodes,” Physical Review B, vol. 67, no. 4, Article ID 045109, 19 pages, 2003.
[65]  M. Wohlgenannt, X. M. Jiang, Z. V. Vardeny, and R. A. J. Janssen, “Conjugation-length dependence of spin-dependent exciton formation rates in Π-conjugated oligomers and polymers,” Physical Review Letters, vol. 88, no. 19, pp. 1974011–1974014, 2002.
[66]  F. Feller and A. P. Monkman, “Electroabsorption studies of poly(2,5-pyridinediyl),” Physical Review B, vol. 60, no. 11, pp. 8111–8116, 1999.
[67]  W. T. Simpson, “Resonance force theory of carotenoid pigments,” Journal of the American Chemical Society, vol. 77, pp. 6164–6168, 1955.
[68]  W. T. Simpson, “Internal dispersion forces. The polyenes,” Journal of the American Chemical Society, vol. 73, no. 11, pp. 5363–5367, 1951.
[69]  E. W. Snedden, A. P. Monkman, and F. B. Dias, “Photophysics of charge generation in organic photovoltaic materials: kinetic studies of geminate and free polarons in a model donor/acceptor system,” Journal of Physical Chemistry C, vol. 116, pp. 86–97, 2012.
[70]  E. W. Snedden, A. P. Monkman, and F. B. Dias, “Kinetic studies of geminate polaron pair recombination, dissociation, and efficient triplet exciton formation in PC:PCBM organic photovoltaic blends,” Journal of Physical Chemistry C, vol. 116, pp. 4390–4398, 2012.
[71]  S. Karabunarliev and E. R. Bittner, “Dissipative dynamics of spin-dependent electron-hole capture in conjugated polymers,” Journal of Chemical Physics, vol. 119, no. 7, pp. 3988–3995, 2003.
[72]  V. Jankus, C. Winscom, and A. P. Monkman, “The photophysics of singlet, triplet, and degradation trap states in 4,4- N, N′-dicarbazolyl- 1, 1′ -biphenyl,” Journal of Chemical Physics, vol. 130, no. 7, Article ID 074501, 2009.
[73]  V. Jankus, C. Winscom, and A. P. Monkman, “Critical role of triplet exciton interface trap states in bilayer films of NPB and Ir(piq)3,” Advanced Functional Materials, vol. 21, no. 13, pp. 2522–2526, 2011.
[74]  S. Yin, L. Chen, P. Xuan, K. Q. Chen, and Z. Shuai, “Field effect on the singlet and triplet exciton formation in organic/polymeric light-emitting diodes,” Journal of Physical Chemistry B, vol. 108, no. 28, pp. 9608–9613, 2004.
[75]  M. Das, S. Ramasesha, and S. Mazumdar, “Role of electron-electron interactions on spin effects in electron-hole recombination in organic light emitting diodes,” Synthetic Metals, vol. 155, no. 2, pp. 270–273, 2005.
[76]  S. Difley, D. Beljonne, and T. V. Voorhis, “On the singlet-triplet splitting of geminate electron-hole pairs in organic semiconductors,” Journal of the American Chemical Society, vol. 130, no. 11, pp. 3420–3427, 2008.
[77]  D. Beljonne, Z. Shuai, A. Ye, and J. L. Brédas, “Charge-recombination processes in oligomer- and polymer-based light-emitting diodes: a molecular picture,” Journal of the Society for Information Display, vol. 13, no. 5, pp. 419–427, 2005.
[78]  L. Chen, L. Zhu, and Z. Shuai, “Singlet—triplet splittings and their relevance to the spin-dependent exciton formation in light-emitting polymers: an EOM/CCSD study,” Journal of Physical Chemistry A, vol. 110, no. 50, pp. 13349–13354, 2006.
[79]  M. Gordon and W. R. Ware, Eds., The Exciplex, Academic Press, New York, NY, USA, 1975.
[80]  S. M. King, C. Rothe, D. Dai, and A. P. Monkman, “Femtosecond ground state recovery: measuring the intersystem crossing yield of polyspirobifluorene,” Journal of Chemical Physics, vol. 124, no. 23, Article ID 234903, 2006.
[81]  M. K. Lee, M. Segal, Z. G. Soos, J. Shinar, and M. A. Baldo, “Yield of singlet excitons in organic light-emitting devices: a double modulation photoluminescence-detected magnetic resonance study,” Physical Review Letters, vol. 94, no. 13, Article ID 137403, 2005.
[82]  M. Segal, M. A. Baldo, M. K. Lee, J. Shinar, and Z. G. Soos, “Frequency response and origin of the spin-1/2 photoluminescence-detected magnetic resonance in a π-conjugated polymer,” Physical Review B, vol. 71, no. 24, pp. 1–11, 2005.
[83]  M. K. Lee, M. Segal, Z. G. Soos, J. Shinar, and M. A. Baldo, “Yield of singlet excitons in organic light-emitting devices: a double modulation photoluminescence-detected magnetic resonance study,” Physical Review Letters, vol. 94, no. 13, Article ID 137403, 2005.
[84]  S. Sinha and A. P. Monkman, “Delayed recombination of detrapped space-charge carriers in poly[2-methoxy-5- (2′-ethyl-hexyloxy)-1,4-phenylene vinylene]-based light-emitting diode,” Journal of Applied Physics, vol. 97, no. 11, Article ID 114505, pp. 1–7, 2005.
[85]  S. Sinha, C. Rothe, R. Güntner, U. Scherf, and A. P. Monkman, “Electrophosphorescence and delayed electroluminescence from pristine polyfluorene thin-film devices at low temperature,” Physical Review Letters, vol. 90, no. 12, Article ID 127402, 4 pages, 2003.
[86]  J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. K?hler, and R. H. Friend, “Spin-dependent exciton formation in π-conjugated compounds,” Nature, vol. 413, no. 6858, pp. 828–831, 2001.
[87]  C. Rothe, S. King, and A. Monkman, “Long-range resonantly enhanced triplet formation in luminescent polymers doped with iridium complexes,” Nature Materials, vol. 5, no. 6, pp. 463–466, 2006.
[88]  P. A. Lane, L. C. Palilis, D. F. O'Brien et al., “Origin of electrophosphorescence from a doped polymer light emitting diode,” Physical Review B, vol. 63, no. 23, Article ID 235206, 8 pages, 2001.
[89]  H. A. Al Attar and A. P. Monkman, “Dopant effect on the charge injection, transport, and device efficiency of an electrophosphorescent polymeric light-emitting device,” Advanced Functional Materials, vol. 16, no. 17, pp. 2231–2242, 2006.
[90]  L. C. Lin, H. F. Meng, J. T. Shy et al., “Triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes,” Physical Review Letters, vol. 90, no. 3, Article ID 036601, 4 pages, 2003.
[91]  A. S. Dhoot, D. S. Ginger, D. Beljonne, Z. Shuai, and N. C. Greenham, “Triplet formation and decay in conjugated polymer devices,” Chemical Physics Letters, vol. 360, no. 3-4, pp. 195–201, 2002.
[92]  Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, “Improved quantum efficiency for electroluminescence in semiconducting polymers,” Nature, vol. 397, no. 6718, pp. 414–415, 1999.
[93]  M. Tammer, R. W. T. Higgins, and A. P. Monkman, “High optical anisotropy in thin films of polyfluorene and its affect on the outcoupling of light in typical polymer light emitting diode structures,” Journal of Applied Physics, vol. 91, no. 7, Article ID 4010, p. 4, 2002.
[94]  E. J. W. List, R. Guentner, P. S. de Freitas, and U. Scherf, “The effect of keto defect sites on the emission properties of polyfluorene-type materials,” Advanced Materials, vol. 14, pp. 374–378, 2002.
[95]  S. I. Hintschich, C. Rothe, S. Sinha, A. P. Monkman, P. Scandiucci de Freitas, and U. Scherf, “Population and decay of keto states in conjugated polymers,” Journal of Chemical Physics, vol. 119, no. 22, pp. 12017–12022, 2003.
[96]  H. Spreitzer, H. Becker, E. Breuning et al., “Light emitting polymer materials for full-color displays,” in Organic Light-Emitting Materials and Devices VI, pp. 16–25, usa, July 2002.
[97]  A. Van Dijken, A. Perro, E. A. Meulenkamp, and K. Brunner, “The influence of a PEDOT:PSS layer on the efficiency of a polymer light-emitting diode,” Organic Electronics, vol. 4, no. 2-3, pp. 131–141, 2003.
[98]  S. M. King, D. Dai, C. Rothe, and A. P. Monkman, “Exciton annihilation in a polyfluorene: low threshold for singlet-singlet annihilation and the absence of singlet-triplet annihilation,” Physical Review B, vol. 76, no. 8, Article ID 085204, 2007.
[99]  M. Deussen, M. Scheidler, and H. B?ssler, “Electric field-induced photoluminescence quenching in thin-film light-emitting diodes based on poly(phenyl-p-phenylene vinylene),” Synthetic Metals, vol. 73, no. 2, pp. 123–129, 1995.
[100]  E. J. W. List, C. H. Kim, A. K. Naik et al., “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: a quantitative study,” Physical Review B, vol. 64, no. 15, Article ID 155204, pp. 1552041–15520411, 2001.
[101]  C. Rothe, H. A. Al Attar, and A. P. Monkman, “Absolute measurements of the triplet-triplet annihilation rate and the charge-carrier recombination layer thickness in working polymer light-emitting diodes based on polyspirobifluorene,” Physical Review B, vol. 72, no. 15, pp. 1–9, 2005.
[102]  D. Hertel, H. B?ssler, R. Guentner, and U. Schert, “Triplet-triplet annihilation in a poly(fluorene)-derivative,” Journal of Chemical Physics, vol. 115, no. 21, pp. 10007–10013, 2001.
[103]  C. Rothe and A. P. Monkman, “Triplet exciton migration in a conjugated polyfluorene,” Physical Review B, vol. 68, no. 7, Article ID 075208, pp. 752081–7520811, 2003.
[104]  C. Rothe and A. Monkman, “Dynamics and trap-depth distribution of triplet excited states in thin films of the light-emitting polymer poly(9,9-di(ethylhexyl)fluorene),” Physical Review B, vol. 65, no. 7, Article ID 073201, pp. 0732011–0732014, 2002.
[105]  P. W. M. Blom, M. J. M. De Jong, and J. J. M. Vleggaar, “Electron and hole transport in poly(p-phenylene vinylene) devices,” Applied Physics Letters, vol. 68, no. 23, pp. 3308–3310, 1996.
[106]  C. Rothe, S. M. King, and A. P. Monkman, “Electric-field-induced singlet and triplet exciton quenching in films of the conjugated polymer polyspirobifluorene,” Physical Review B, vol. 72, no. 8, Article ID 085220, 2005.
[107]  H. E. Lessing, A. Von Jena, and M. Reichert, “Triplet yield determination and heavy-atom effect from ground-state repopulation kinetics,” Chemical Physics Letters, vol. 42, no. 2, pp. 218–222, 1976.
[108]  B. H. Wallikewitz, D. Kabra, S. Gelinas, and R. H. Friend, “Triplet dynamics in fluorescent polymer light-emitting diodes,” Physical Review B, vol. 85, Article ID 045209, 15 pages, 2012.
[109]  S. Sinha and A. P. Monkman, “Delayed electroluminescence via triplet-triplet annihilation in light emitting diodes based on poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene],” Applied Physics Letters, vol. 82, no. 26, pp. 4651–4653, 2003.
[110]  C. Rothe and A. Monkman, “Regarding the origin of the delayed fluorescence of conjugated polymers,” Journal of Chemical Physics, vol. 123, no. 24, Article ID 244904, pp. 1–6, 2005.
[111]  S. M. King, M. Cass, M. Pintani et al., “The contribution of triplet-triplet annihilation to the lifetime and efficiency of fluorescent polymer organic light emitting diodes,” Journal of Applied Physics, vol. 109, no. 7, Article ID 074502, 2011.
[112]  C. A. Parker and C. G. Hatchard, “Delayed fluorescence of pyrene in ethanol,” Transactions of the Faraday Society, vol. 59, pp. 284–295, 1963.
[113]  J. Jortner, S. I. Choi, J. L. Katz, and S. A. Rice, “Triplet energy transfer and triplet-triplet interaction in aromatic crystals,” Physical Review Letters, vol. 11, no. 7, pp. 323–326, 1963.
[114]  J. B. Birks, “The quintet state of the pyrene excimer,” Physics Letters A, vol. 24, no. 9, pp. 479–480, 1967.
[115]  J. Saltiel, “Spin-statistical factors in reactions of free-radicals and triplet-states,” Abstracts of Papers of the American Chemical Society, vol. 182, p. 65, 1981.
[116]  J. Saltiel, G. R. Marchand, W. K. Smothers, S. A. Stout, and J. L. Charlton, “Concerning the spin-statistical factor in the triplet-triplet annihilation of anthracene triplets,” Journal of the American Chemical Society, vol. 103, no. 24, pp. 7159–7164, 1981.
[117]  M. B. Smith and J. Michl, “Singlet fission,” Chemical Reviews, vol. 110, no. 11, pp. 6891–6936, 2010.
[118]  R. Froese and K. Morokuma, “Accurate calculations of bond-breaking energies in C60 using the three-layered ONIOM method,” Chemical Physics Letters, vol. 305305, no. 5-6, pp. 419–424, 1999.
[119]  W. G. Herkstroeter and P. B. Merkel, “The triplet state energies of rubrene and diphenylisobenzofuran,” Journal of Photochemistry, vol. 16, no. 4, pp. 331–341, 1981.
[120]  H. D. Burrows, J. Seixas de Melo, C. Serpa et al., “Triplet state dynamics on isolated conjugated polymer chains,” Chemical Physics, vol. 285, no. 1, pp. 3–11, 2002.
[121]  L. Ma, K. K. Zhang, C. Kloc, H. D. Sun, M. E. Michel-Beyerle, and G. G. Gurzadyan, “Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy,” Physical Chemistry Chemical Physics, vol. 14, pp. 8307–8312, 2012.
[122]  Y. Zhang, M. Whited, M. E. Thompson, and S. R. Forrest, “Singlet-triplet quenching in high intensity fluorescent organic light emitting diodes,” Chemical Physics Letters, vol. 495, no. 4-6, pp. 161–165, 2010.
[123]  R. W. T. Higgins, A. P. Monkman, H. G. Nothofer, and U. Scherf, “Energy transfer to porphyrin derivative dopants in polymer light-emitting diodes,” Journal of Applied Physics, vol. 91, no. 1, pp. 99–105, 2002.
[124]  Y. Iwasaki, T. Osasa, M. Asahi, M. Matsumura, Y. Sakaguchi, and T. Suzuki, “Fractions of singlet and triplet excitons generated in organic light-emitting devices based on a polyphenylenevinylene derivative,” Physical Review B, vol. 74, no. 19, Article ID 195209, 2006.
[125]  C. Rothe, K. Brunner, I. Bach, S. Heun, and A. P. Monkman, “Effects of triplet exciton confinement induced by reduced conjugation length in polyspirobifluorene copolymers,” Journal of Chemical Physics, vol. 122, no. 8, Article ID 084706, pp. 1–6, 2005.
[126]  F. Perrin, “La fluorescence des solutions,” Annals of Physics, vol. 12, pp. 169–275, 1929.
[127]  G. N. Lewis and M. Kasha, “Phosphorescence and the triplet state,” Journal of the American Chemical Society, vol. 66, no. 12, pp. 2100–2116, 1944.
[128]  J. C. Deaton, S. C. Switalski, D. Y. Kondakov et al., “E-type delayed fluorescence of a phosphine-supported cu 2(μ-nar 2) 2 diamond core: harvesting singlet and triplet excitons in OLEDs,” Journal of the American Chemical Society, vol. 132, no. 27, pp. 9499–9508, 2010.
[129]  A. J. M. Miller, J. L. Dempsey, and J. C. Peters, “Long-lived and efficient emission from mononuclear amidophosphine complexes of copper,” Inorganic Chemistry, vol. 46, no. 18, pp. 7244–7246, 2007.
[130]  H. C. Longuet-Higgins and J. N. Murrell, “The electronic spectra of aromatic molecules V: the interaction of two conjugated systems,” Proceedings of the Physical Society. Section A, vol. 68, no. 7, article no. 308, pp. 601–611, 1955.
[131]  J. N. Murrell, “Relative importance of exciton delocalization and electron delocalization in polyene spectra,” The Journal of Chemical Physics, vol. 37, no. 5, pp. 1162–1163, 1962.
[132]  D. Chaudhuri, H. Wettach, K. J. Van Schooten et al., “Tuning the singlet-triplet gap in metal-free phosphorescent π-conjugated polymers,” Angewandte Chemie, vol. 49, no. 42, pp. 7714–7717, 2010.
[133]  A. Endo, K. Sato, K. Yoshimura et al., “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Applied Physics Letters, vol. 98, no. 8, Article ID 083302, 2011.
[134]  A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, “Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light-emitting diodes -A novel mechanism for electroluminescence,” Advanced Materials, vol. 21, no. 47, pp. 4802–4806, 2009.
[135]  J. Kalinowski, “Excimers and exciplexes in organic electroluminescence,” Materials Science- Poland, vol. 27, no. 3, pp. 735–756, 2009.
[136]  S. A. Jenekhe and J. A. Osaheni, “Excimers and exciplexes of conjugated polymers,” Science, vol. 265, no. 5173, pp. 765–768, 1994.
[137]  K. Itano, H. Ogawa, and Y. Shirota, “Exciplex formation at the organic solid-state interface: yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials,” Applied Physics Letters, vol. 72, no. 6, pp. 636–638, 1998.
[138]  M. Cocchi, D. Virgili, G. Giro et al., “Efficient exciplex emitting organic electroluminescent devices,” Applied Physics Letters, vol. 80, no. 13, pp. 2401–2403, 2002.
[139]  J. Kalinowski, M. Cocchi, P. Di Marco, W. Stampor, G. Giro, and V. Fattori, “Impact of high electric fields on the charge recombination process in organic light-emitting diodes,” Journal of Physics D, vol. 33, no. 19, pp. 2379–2387, 2000.
[140]  L. C. Palilis, A. J. M?kinen, M. Uchida, and Z. H. Kafafi, “Highly efficient molecular organic light-emitting diodes based on exciplex emission,” Applied Physics Letters, vol. 82, no. 14, pp. 2209–2211, 2003.
[141]  B. Frederichs and H. Staerk, “Energy splitting between triplet and singlet exciplex states determined with E-type delayed fluorescence,” Chemical Physics Letters, vol. 460, no. 1-3, pp. 116–118, 2008.
[142]  H. Beens and A. Weller, “Application of the tyablikov-bogolyubov diagonalization method to magnetic thin films,” Acta Physica Polonica, vol. 34, pp. 539–541, 1968.
[143]  A. Wellar, The Exciplex, Academic Press, New York, NY, USA, 1975.
[144]  M. Cocchi, D. Virgili, C. Sabatini, and J. Kalinowski, “Organic electroluminescence from singlet and triplet exciplexes: exciplex electrophosphorescent diode,” Chemical Physics Letters, vol. 421, no. 4-6, pp. 351–355, 2006.
[145]  A. C. Morteani, A. S. Dhoot, J. S. Kim et al., “Barrier-Free Electron-Hole Capture in Polymer Blend Heterojunction Light-Emitting Diodes,” Advanced Materials, vol. 15, no. 20, pp. 1708–1712, 2003.
[146]  K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nature Photonics, vol. 6, pp. 253–258, 2012.
[147]  K. Goushi and C. Adachi, “Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes,” Applied Physics Letters, vol. 101, Article ID 023306, 4 pages, 2012.
[148]  V. Jankus, C. Chiang, F. B. Dias, and A. Monkman, “Deep blue exciplex organic light emitting diodes with enhanced efficiency through triplet fusion,” Advanced Materials. In press.
[149]  V. Jankus, C. Winscom, and A. P. Monkman, “Dynamics of triplet migration in films of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1, 1′-biphenyl-4, 4′′-diamine,” Journal of Physics Condensed Matter, vol. 22, no. 18, Article ID 185802, 2010.
[150]  E. R. Bittner, I. Burghardt, and R. H. Friend, “Does interchain stacking morphology contribute to the singlet-triplet interconversion dynamics in polymer heterojunctions?” Chemical Physics, vol. 357, no. 1–3, pp. 159–162, 2009.
[151]  A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend, and C. Silva, “Exciton regeneration at polymeric semiconductor heterojunctions,” Physical Review Letters, vol. 92, no. 24, Article ID 247402, 1 pages, 2004.
[152]  A. C. Morteani, R. H. Friend, and C. Silva, “Endothermic exciplex-exciton energy-transfer in a blue-emitting polymeric heterojunction system,” Chemical Physics Letters, vol. 391, no. 1–3, pp. 81–84, 2004.
[153]  D. D. Gebler, Y. Z. Wang, J. W. Blatchford et al., “Exciplex emission in bilayer polymer light-emitting devices,” Applied Physics Letters, vol. 70, no. 13, pp. 1644–1646, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133